

PEET

The Project

This project goal emerges from the potential synergy among

- a) the huge amount of academic data actually existing at the academic departments of faculties and schools, and
- b) the maturity of data science in order to provide algorithms and tools to analyse and extract information from what is more commonly

A rich picture can be extracted from this data if converthis project is to apply data mining algorithms to project information about and to identify student profiles. Ar referring to within the project scope is, for example: Students that are blocked on a certain set of subjects etc.

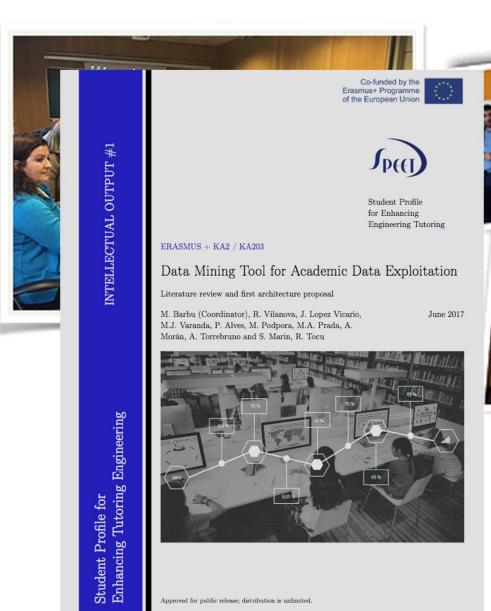
With such classification that, of course, devise a more that will be established from the very beginning of patterns will be depicted. Comparison among the differ order to establish correlations and get a more complete

- Available data and a priori characterization of potent
- Pre-processing of data. First examples of processi from partners
- Data analysis at partner level. Interpretation of cated
- 4.- Setting up the basis and definitions for an IT-based assistant tutoring system.

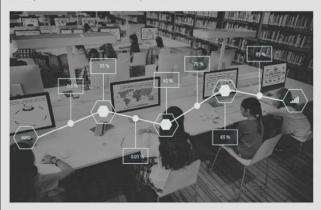
www-speletyping et deomoped tools into a website based tool.

SPEET ... in short

SPEET is an ERASMUS+ project aimed to determine and categorize the different profiles for engineering students across Europe. The main rationale behind this proposal is the observation that students performance can be classified according to their behavior while conducting their studies. After years of teaching and sharing thoughts among colleagues from different EU institutions it seems students could obey to some classification according to the way they face their studies. Therefore, if it would be possible to know what kind of student one student is, this may be of valuable help for tutors.



Student Profile for Enhancing Engineering Tutoring


ERASMUS + KA2 / KA203

Data Mining Tool for Academic Data Exploitation

Literature review and first architecture proposal

M. Barbu (Coordinator), R. Vilanova, J. Lopez Vicario, M.J. Varanda, P. Alves, M. Podpora, M.A. Prada, A. Morán, A. Torrebruno and S. Marin, R. Tocu

June 2017

Approved for public release; distribution is unlimited.

SPEET: AN INTERNATIONAL COLLABORATIVE EXPERIENCE IN DATA MINING FOR EDUCATION

R. Vllanova¹, J. Vicario¹, M. Prada², M. Barbu³, M. Dominguez³, M. J. Varanda⁴, M. Podpora⁵, U. Spagnolini⁶

> ¹Universitat Autonoma Barcelona (SPAIN) ²Universidad de Leon (SPAIN) 3University Dunarea de Jos, Galati (ROMANIA) Instituto Politecnico de Bragança (PORTUGAL) ⁵Opole University of Technology (POLAND) ⁶Politecnico de Milano (ITALY)

Abstract

This paper presents the collaborative experience that is under development as the European ERASMUS+ project SPEET (Student Profile for Enhancing Engineering Tutoring). This project goal emerges from the potential synergy among a) the huge amount of academic data actually existing at the academic departments of faculties and schools, and b) the maturity of data science in order to provide algorithms and tools to analyse and extract information from what is more commonly referred to Big Data. A rich picture can be extracted from this data if conveniently processed. The main purpose of this project is to apply data mining algorithms to process this data in order to extract information about and to identify student profiles. An idea of the student profile we are referring to within the project scope is, for example: Students that finish degree on time. Students that are blocked on a certain set of subjects. Students that leave degree earlier, etc.

Keywords: Educational Data Mining, drop-off, tutoring action support

1 INTRODUCTION

Data has always been a significant asset for institutions, and has been used to inform their day-to-day operational decisions as well as longer-term business and strategic decisions. On a strategic scale, data is used to inform senior management's business planning and overall strategy for their institutions. Student enrolment data, both historical and projected, as well as estates data, will influence the plans institutions make to build new buildings or refit current buildings to meet projected need. Financial data influences strategic decisions on expanding or reducing particular faculties or

From a more purely educational point of view, the available academic data can be collected, linked together and analysed to provide insights into student behaviours and identify patterns to potentially predict future outcomes. In this paper, usually available data will be described as well as its potential use for the benefit of students. The use of academic data for supporting tutoring action is where we

Higher education institutions are not an exception and the use of analytics in education has grown in recent years for four primary reasons [1]: a substantial increase in data quantity, improved data formats, advances in computing, and increased sophistication of tools available for analytics. In recent years, the sophistication and ease of use of tools for analyzing data make it possible for an increasing range of researchers to apply data mining methodology without needing extensive experience in computer programming. Many of these tools are adapted from the business intelligence field. Higher education institutions have always operated in an information-rich landscape, generating and collecting vast amounts of data each day. A coarse classification of the types of data that higher education institutions deal with every day: Student record data, Staff data, Admissions and applications data, Financial data, Alumni data, Course data, Facilities data,

In commercial fields, business and organizations are deploying sophisticated analytic techniques to evaluate rich data sources, identify patterns within the data and exploit these patterns in decision making. Recently researchers and developers from the educational community started exploring the

Enhancing Tutoring Engineering Student Profile for

Student Explanatory Information

Attribute	Type of Variable
Student ID	Natural Number
YearOfBirth	Natural Number
PlaceOfBirth	Factor
Sex	Factor (Female, Male)
ResidenceCity	Factor
ResidenceCityDuringStudies	Factor
AccessToStudiesAge	Natural Number
Nationality	Factor
PreviousStudies	Factor (SciencesSecondary, TechnologicalSecondary, LiteratureSecondary, ProfessionalStudies)
PreviousStudiesCenter	Factor
FatherEducationLevel	Factor (PrimaryLevel, SecondaryLevel, UniversityLevel, DoctorateLevel)
MotherEducationLevel	Factor (PrimaryLevel, SecondaryLevel, UniversityLevel, DoctorateLevel)
AdmissionScore	Real Number

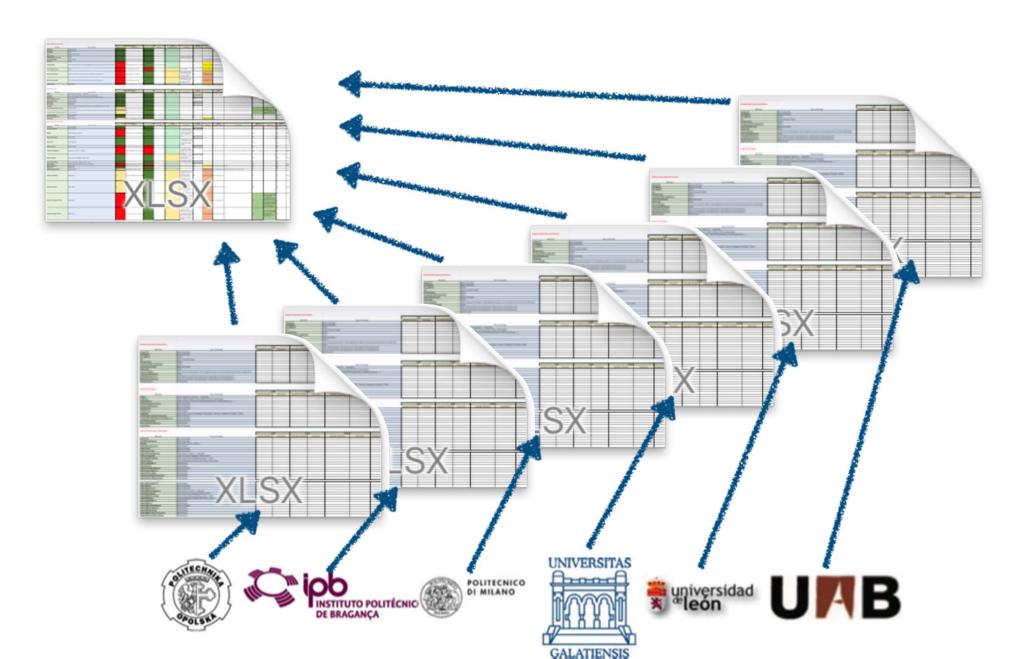
Degree Information

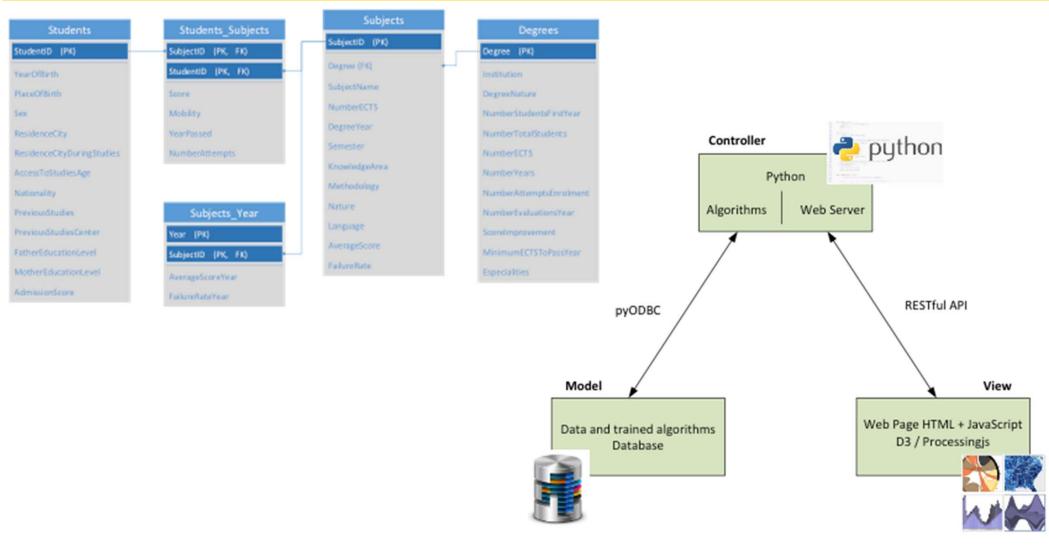
Attribute	Type of Variable			
Degree	Factor (Degree1, Degree2,, DegreeM)			
Institution	Factor (UAB, POLIMI, ULEON, GALATI, OPOLE, BRAGANÇA)			
DegreeNature	Factor (ComputerScience, ElectricalEngineering, ControlEngineering,)			
NumberStudentsFirstYear	Natural Number			
NumberTotalStudents	Natural Number			
NumberECTS	Natural Number			
NumberYears	Real Number			
Languages	Factor (Only Country Language, Only English, Country Language and English, Other)			
NumberAttemptsToEnroleSubject	Natural Number			
NumberAttemptsToBeEvaluatedOneYear	Natural Number			
ScoreImprovement	Factor (YES, NO)			
MinimumECTSToPassYear	Real Number			
Especialities	Natural Number			

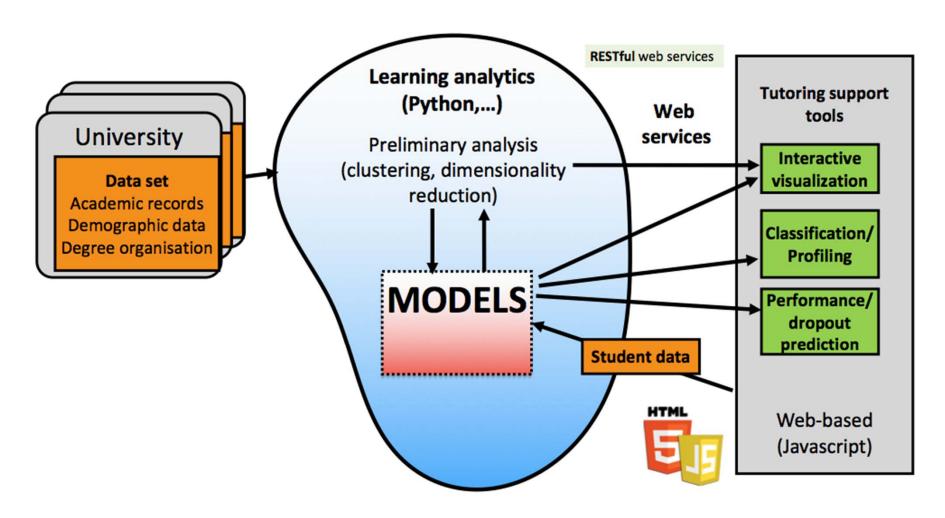
Student Performance Information

Attribute	Type of Variable		
Student ID	Natural Number		
YearsToFinishDegree	Natural Number		
Mobility	Factor (No, Erasmus, Other)		
Subject1NumberECTS	Real Number		
Subject1Year	Natural Number		
Subject1Semester	Natural Number		
Subject1KnowledgeArea	Factor (Area 1, Area 2,, Area M)		
Subject1Language	Factor (Country Language, English, Other)		
Subject1Methodology	Factor (Theoretical, Laboratory, Theor. + Lab.)		
Subject1Nature	Factor (Mandatory, Elective, BsC Thesis, Internship)		
Subject1WeekHours	Real Number		
Subject1Score	Real Number		
Subject1NumberAttemps	Natural Number		
Subject1AverageScore	Real Number		
Subject1FailureRate	Real Number		
Subject1AverageScoreLastYear	Real Number		
Subject1FailureRateLastYear	Real Number		

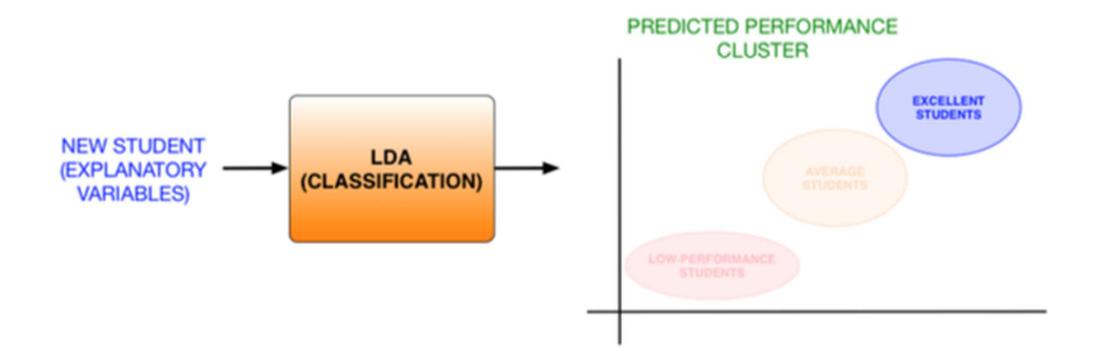
SubjectMNumberECTS	Real Number
SubjectMYear	Natural Number
SubjectMSemester	Natural Number
SubjectMKnowledgeArea	Factor (Area 1, Area 2,, Area N)
SubjectMLanguage	Factor (Country Language, English, Other)
SubjectMMethodology	Factor (Theoretical, Laboratory, Theor. + Lab.)
SubjectMNature	Factor (Mandatory, Elective, BsC Thesis, Internship)
Subject1WeekHours	Real Number
SubjectMScore	Real Number
SubjectMNumberAttemps	Natural Number
SubjectMAverageScore	Real Number
SubjectMFailureRate	Real Number
SubjectMAverageScoreLastYear	Real Number
SubjectMFailureRateLastYear	Real Number

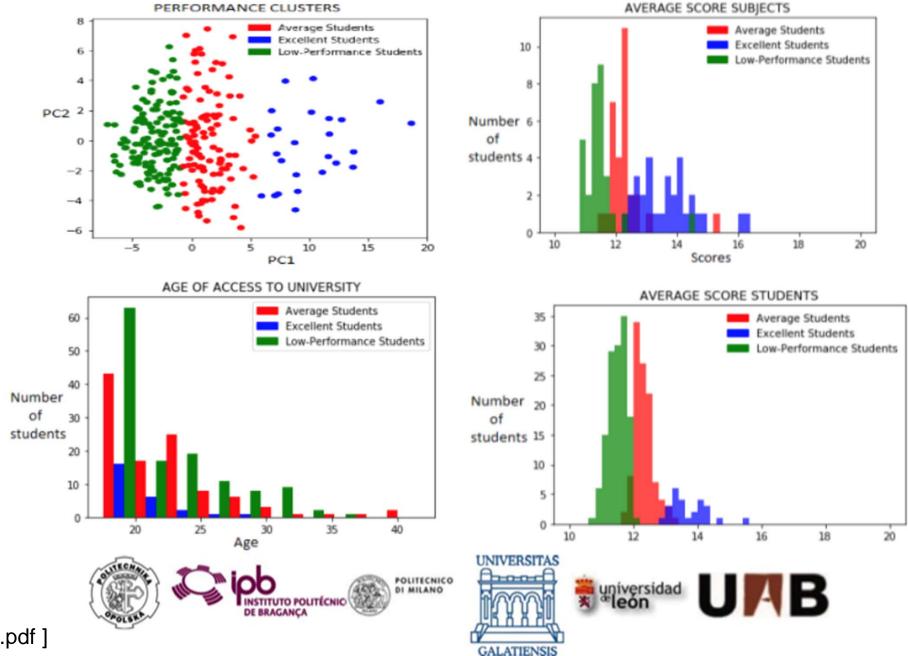


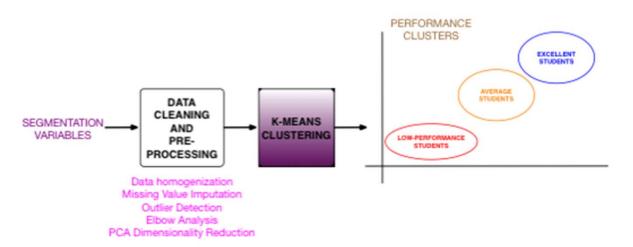


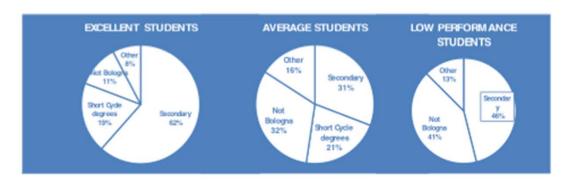


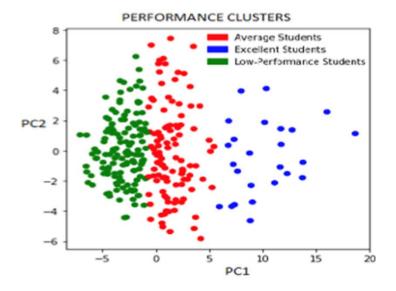
Data Normalization Elbow Analysis PCA Dimensionality Reduction

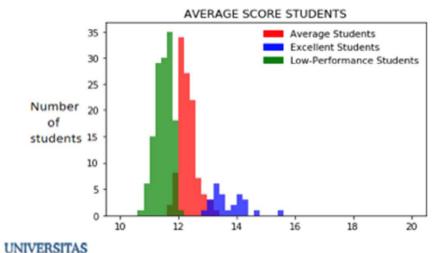


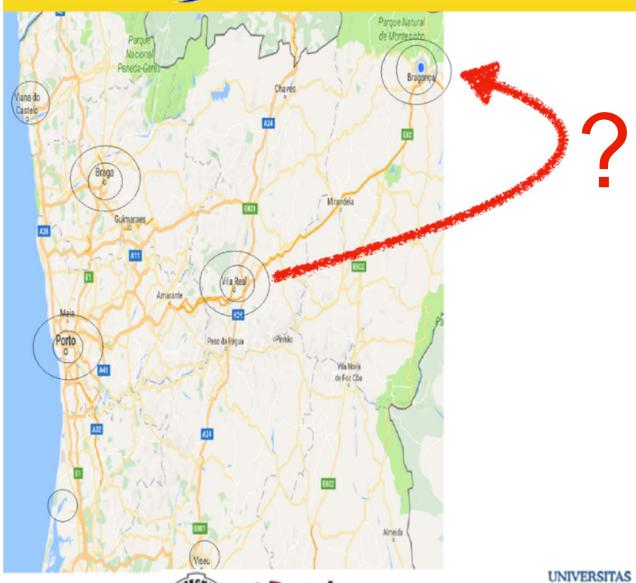


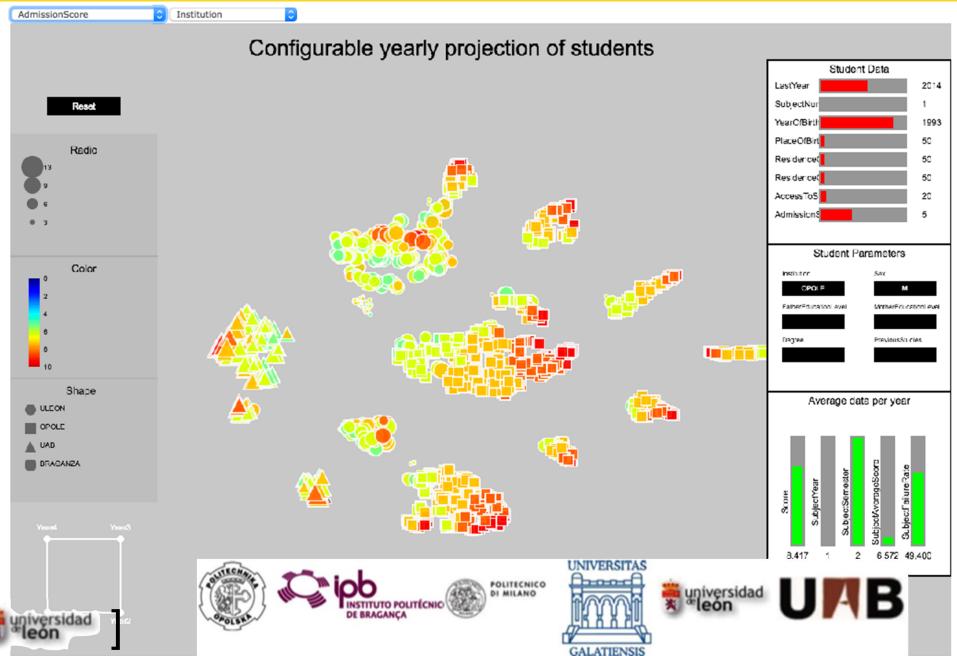


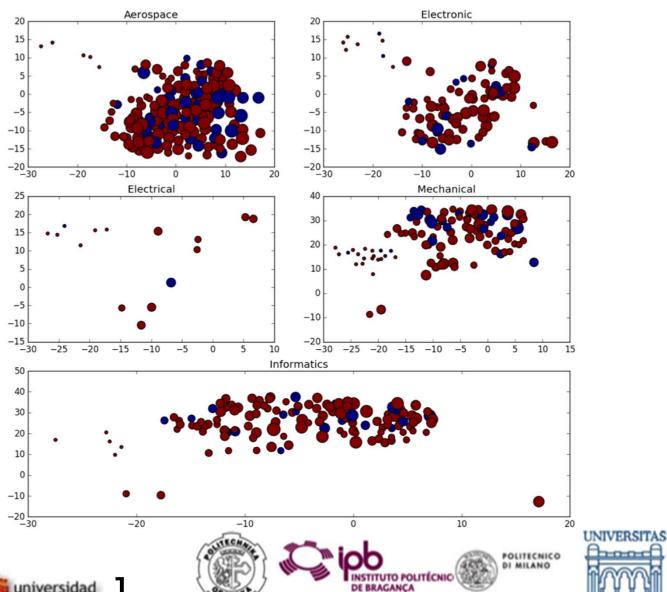





Clustering Algorithms

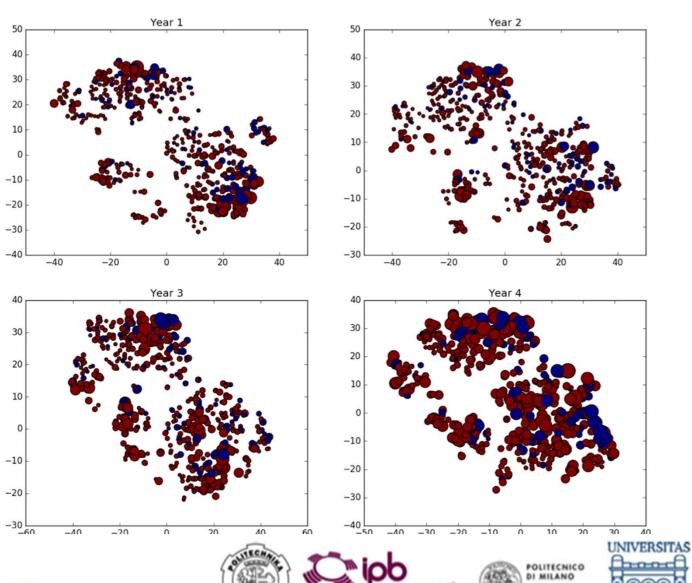






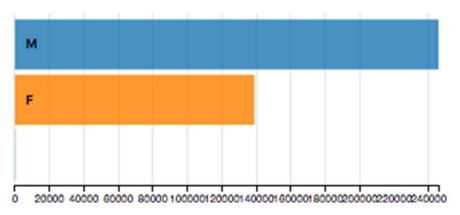
EC. Degree Proyection

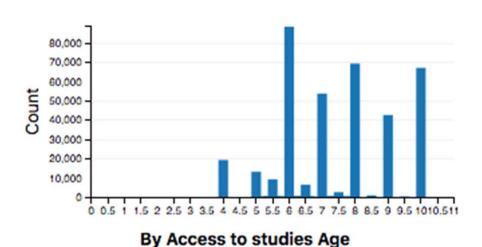
Data projection through Manifold Learning

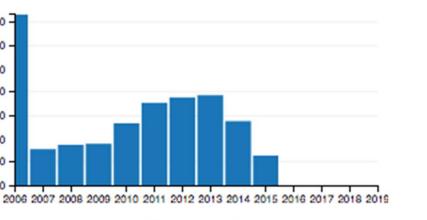


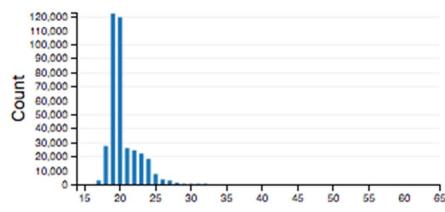
ES. Yearly evolution of students

Data projection through Manifold Learning








By Score

By Last Year of Studies

GALATIENSIS

14,000 -

12,000

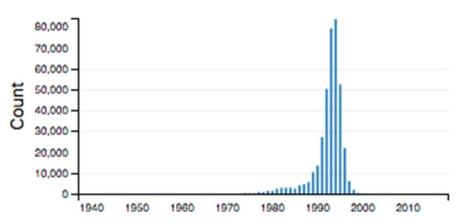
10,000

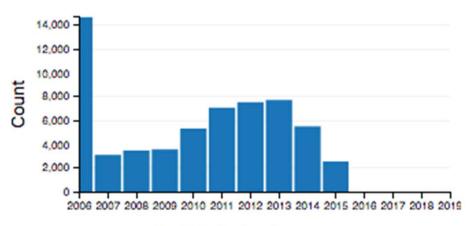
8,000

6,000

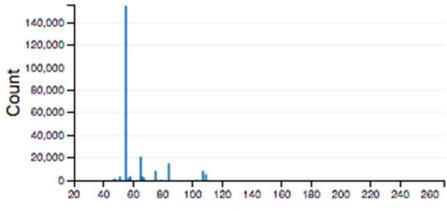
4,000

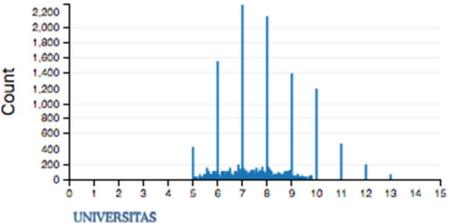
2,000


Count



By Year of Birth


By Last Year of Studies


By Regional gross domestic product per capita

By Admission Score

Implementation

Significant Explanatory Covariates (FIXED EFFECTS)

Sex

Mationality

Access to Studies Year

Access to Studies Age

Change of faculty

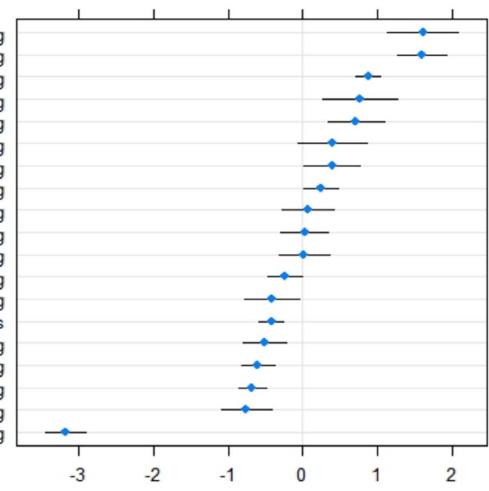
Weighted Average Evaluations in the 1° semester of the 1° year

Number of Subjects Passed in the 1° semester of the 1° year

Average number of attempts per exam in the 1° semester of the 1° year

RANDOM EFFECT only on the intercept

- >> package(Ime4)
- >> glmer(y ~ (1 | DegreeNature) + Sex + Nationality + ...)



Civil and Environmental Engineering Environmental and Land Planning Engineering Management Engineering Industrial Production Engineering Automation Engineering Telecommunications Engineering Physics Engineering Biomedical Engineering Mathematical Engineering Materials and Nanotechnology Engineering Electronic Engineering Aerospace Engineering Electrical Engineering Engineering of Computing Systems Chemical Engineering Energy Engineering Mechanical Engineering Building Engineering Civil Engineering

Fixed Effects

$$\boldsymbol{\beta} = [\beta_0 \ \beta_1 \dots \ \beta_{p-1}]^T$$

Variable	Estimate	P-value
(Intercept)	-2.322716	2.47e-05
Sex(male)	-0.292086	0.000447
Nationality(other)	-0.423296	0.020026
AccessToStudiesAge	-0.054090	0.029240
AccessToStudiesYear(2010)	-0.022170	0.801236
AccessToStudiesYear(2011)	-0.344638	8.32e-05
AccessToStudiesYear(2012)	-0.844056	< 2e-16
WeightedAverageEvaluations_11	0.060766	< 2e-16
AverageNumbAttemptsPerExam_11	0.028752	0.562176
NumbSubjectsPassed_11	1.709591	< 2e-16
Change (yes)	-0.373339	0.011962

data: global

research done by:

INSTITUTION	DEGREE NAME	Students	Accuracy Level	1st Course Info	3rd Course Contribution
	Aerospace Engineering	166			
ULEON	Electronics Industrial Engineering	88			
	Mechanics Engineering	48			
	Computer Engineering	107			
	Computer Engineering	197			
UAB	Telecomunications Systems Engineering	25			
UAB	Telecomunications Electronics Engineering	28			
	Chemical Engineering	65			
	Mechanics Engineering	266			
	Civil Engineering	346			
IPB	Electrotechnics Engineering	126			
IPB	Computer Engineering	236			
	Computer Electrotechnics Engineering	67			
	Chemical Engineering	83			
CAL	Automation and Applied Informatics	63			
GAL	Computer Science	17			
POL	Architecture	180			
	Civil Engineering	548			
	Automatic Control	50			

INSTITUTION	DEGREE NAME	Students	Silhouette value	Clustering Quality	Score Students Separation
ULEON	Aerospace Engineering	166	0,1		
	Electronics Industrial Engineering	88	0,12		
	Mechanics Engineering	48	0,18		
	Computer Engineering	107	0,13		
	Computer Engineering	197	0,15		
UAB	Telecomunications Systems Engineering	25	0,27		
UAD	Telecomunications Electronics Engineering	28	0,17		
	Chemical Engineering	65	0,3		
	Mechanics Engineering	266	0,08		
	Civil Engineering	346	0,05		
IPB	Electrotechnics Engineering	126	0,09		
IFD	Computer Engineering	236	0,13		
	Computer Electrotechnics Engineering	67	0,08		
	Chemical Engineering	83	0,11		
GAL	Automation and Applied Informatics	17	0,29		
GAL	Computer Science	63	0,17		
	Architecture	30	0,17		
POL	Civil Engineering	62	0,19		
	Automatic Control	27	0,14		

GALATI

Automation and Applied Informatics

Input Data	No Categorical variables	Categoric al Variables	Training Time
Categoric al		6 %	0.4 s
1st Course	99 %	99 %	0.4 s
2nd Course	99 %	99 %	0.4 s
3rd Course			

Computer Science

Input Data	No Categorical variables	Categoric al Variables	Training Time
Categoric al		69 %	0.4 s
1st Course	90 %	88 %	0.5 s
2nd Course	96 %	93 %	0.5 s
3rd Course			

