
Universidad	de	Oviedo

Técnicas	avanzadas	de	analí3ca	visual	
Ignacio	Díaz	Blanco

1

24/11/16 10:15Ideas para el logo de GSDPI

Página 1 de 5file:///Users/idiaz/Documents/git/diario-investigacion/2016-10-12-ideas-logo-gsdpi.html

Ideas para un logo de
GSDPI
Volver a la página de inicio 

Historial
Fecha
(creación/revisión)

Autor descripción

2016-10-12 Ignacio
Díaz

creación

2016-10-13 Ignacio
Díaz

modificación

Elementos del logo

Estructura
Se propone un logo en
el que aparece el
acrónimo del grupo
GSDPI, con la
tipografía "Yanone
Kaffeesatz", que es la
empleada en la página
web oficial. El
acrónimo aparece
rodeado de puntos con
tamaños variables,
mayores en el centro, y
con una variación de
tono (hue) que
produce una escala
perceptualmente
homogénea (Niccoli’s
perceptual rainbow)
que proporciona la
función
d3.interpolateCool(t).
La escala va desde el
amarillo verdoso en el
centro hasta violeta en
la periferia.
Finalmente, el logo

GSDPI Grupo de Supervisión y Diagnóstico  
de Procesos Industriales
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Analí3ca	Visual	
Tres	pilares	básicos
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Visualización	de	Datos	(VD)	

Análisis	Inteligente	de	Datos	(IDA)	

Interacción	(I)

VD	⟶		

IDA	⟶		

I	⟶	
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Visualización	de	datos	
interiorizar	la	información
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Visualización	de	datos	
¿Por	qué	Visualización?
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“Una imagen vale más que mil palabras”
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Visualización	de	datos	
parte	importante	del	proceso	cogni3vo
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Lo veo...
Está muy claro

Esto arroja luz 
al problema

Su explicación
resultó algo oscura

Ella desveló 
el misterio

Él simpre dice la verdad: 
es una persona muy transparente

Este autor es un 
visionario

Muéstrame por qué...



Universidad	de	Oviedo

24/11/16 10:15Ideas para el logo de GSDPI

Página 1 de 5file:///Users/idiaz/Documents/git/diario-investigacion/2016-10-12-ideas-logo-gsdpi.html

Ideas para un logo de
GSDPI
Volver a la página de inicio 

Historial
Fecha
(creación/revisión)

Autor descripción

2016-10-12 Ignacio
Díaz

creación

2016-10-13 Ignacio
Díaz

modificación

Elementos del logo

Estructura
Se propone un logo en
el que aparece el
acrónimo del grupo
GSDPI, con la
tipografía "Yanone
Kaffeesatz", que es la
empleada en la página
web oficial. El
acrónimo aparece
rodeado de puntos con
tamaños variables,
mayores en el centro, y
con una variación de
tono (hue) que
produce una escala
perceptualmente
homogénea (Niccoli’s
perceptual rainbow)
que proporciona la
función
d3.interpolateCool(t).
La escala va desde el
amarillo verdoso en el
centro hasta violeta en
la periferia.
Finalmente, el logo

GSDPI Grupo de Supervisión y Diagnóstico  
de Procesos Industriales

Visualización	de	datos	
parte	importante	del	proceso	cogni3vo
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el 40 % del cerebro
está dedicado a tareas visuales
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Visualización	de	datos	
La	estadís3ca	puede	engañar:	cuarteto	de	Anscombe
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Conjunto 3
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Conjunto 4

clear;
close all; 
 
% Datos del cuarteto Anscombe (http://
en.wikipedia.org/wiki/Anscombe's_quartet)
p  = [10.0  8.04    10.0    9.14    10.0    
7.46    8.0 6.58
8.0 6.95    8.0 8.14    8.0 6.77    8.0 5.76
13.0    7.58    13.0    8.74    13.0    12.74   
8.0 7.71
9.0 8.81    9.0 8.77    9.0 7.11    8.0 8.84
11.0    8.33    11.0    9.26    11.0    7.81    
8.0 8.47
14.0    9.96    14.0    8.10    14.0    8.84    
8.0 7.04
6.0 7.24    6.0 6.13    6.0 6.08    8.0 5.25
4.0 4.26    4.0 3.10    4.0 5.39    19.0    
12.50
12.0    10.84   12.0    9.13    12.0    8.15    
8.0 5.56
7.0 4.82    7.0 7.26    7.0 6.42    8.0 7.91
5.0 5.68    5.0 4.74    5.0 5.73    8.0 6.89];
 
% Separamos los cuatro conjuntos
x{1} = p(:,1:2); 
x{2} = p(:,3:4); 
x{3} = p(:,5:6); 
x{4} = p(:,7:8);
 
figure(1);
clf;
 
for k = 1:4,
    subplot(2,2,k);
    scatter(x{k}(:,1),x{k}(:,2),50,'filled');
    axis equal;
    axis([3 20 1 18]);
    grid on;
    C{k} = cov(x{k}),
    M{k} = mean(x{k}),
    R{k} = corrcoef(x{k}),
    title(sprintf('Conjunto %d',k));
end

¡Los 4 conjuntos
tienen los mismos 

estadísticos!

Matrices de covarianzas

Medias

http://en.wikipedia.org/wiki/Anscombe's_quartet
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Visualización	de	datos	
Mecanismos	pre-atención
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1093840192384901834093281481083459830985560984095809456894
0680946804986049860458094802943209385029348509898690285096
7890956890456809348560394563956034560584560935050358609358
6904690586034870909289091001012948019238401983401923109234
0480923489043859023850923896508309683098670395860394586039
4860934869034586093860938093468093458038034680934568039458
6034560386034563945839586358568039539568309458038505609568
0349568345809358045860958603758609458603583405684305680349
5680395680395840958034860394680938609348609685309456039465
0439580349758603496093458620943580281039803481894104391092

¿Cuántos “sietes” encuentras?
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¿Cuántos “sietes” encuentras?

los has detectado en < 200 ms
¡¡entre cientos de números!!

“cero esfuerzo” para el cerebro
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¿Cuántos “sietes” encuentras?

además, la visualización ha aportado “contexto”
localización, cadencia, patrones de ocurrencias, proporción, ... 

la visualización combina formas sutiles de conocimiento
conocimiento conectado = más conocimiento



Universidad	de	Oviedo

24/11/16 10:15Ideas para el logo de GSDPI

Página 1 de 5file:///Users/idiaz/Documents/git/diario-investigacion/2016-10-12-ideas-logo-gsdpi.html

Ideas para un logo de
GSDPI
Volver a la página de inicio 

Historial
Fecha
(creación/revisión)

Autor descripción

2016-10-12 Ignacio
Díaz

creación

2016-10-13 Ignacio
Díaz

modificación

Elementos del logo

Estructura
Se propone un logo en
el que aparece el
acrónimo del grupo
GSDPI, con la
tipografía "Yanone
Kaffeesatz", que es la
empleada en la página
web oficial. El
acrónimo aparece
rodeado de puntos con
tamaños variables,
mayores en el centro, y
con una variación de
tono (hue) que
produce una escala
perceptualmente
homogénea (Niccoli’s
perceptual rainbow)
que proporciona la
función
d3.interpolateCool(t).
La escala va desde el
amarillo verdoso en el
centro hasta violeta en
la periferia.
Finalmente, el logo

GSDPI Grupo de Supervisión y Diagnóstico  
de Procesos Industriales

Visualización	de	datos	
Mecanismos	pre-atención
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Mecanismos pre-atención (cortex V1) 
• Baja latencia (muy rápidos ~200 ms), 
• Masivamente paralelo: no depende de distractores
• “Cero” esfuerzo: no afectan a proceso cognitivo superior
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Visualización	de	datos	
reorganizando	datos	⟶	emergen	patrones
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datos	de	consumos	eléctricos	en		UniLeòn	

desarrollado	en	el	marco	de	DPI2015-69891-C2-2-R
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preatención	
detección	visual	

inmediata	
de	patrones	

inusuales

reorganización	
espacial		

de	la	información	
basada	en	

conocimiento	a	priori	
(periodicidades	

temporales)

el	“orden”	produce	
patrones	reconocibles

el	contexto	temporal	
permite	intepretarlos

datos	de	consumos	eléctricos	en		UniLeòn	
desarrollado	en	el	marco	de	DPI2015-69891-C2-2-R
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Finalmente, el logo

GSDPI Grupo de Supervisión y Diagnóstico  
de Procesos Industriales

Visualización	de	datos	
reorganizando	datos	⟶	emergen	patrones

15

datos	de	consumos	eléctricos	en		UniLeòn	
desarrollado	en	el	marco	de	DPI2015-69891-C2-2-R
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perceptual rainbow)
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función
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amarillo verdoso en el
centro hasta violeta en
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Finalmente, el logo

GSDPI Grupo de Supervisión y Diagnóstico  
de Procesos Industriales

Visualización	de	datos	
aporta	contexto,	conecta	dominios
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Mapas	
fuerte	conocimiento	previo	

lugares,	rincones,	recuerdos	…

Datos	
consumos,	ventas,	contaminación,	

ruido,		…

juntos	valen	más		
que	su	suma+ ⟶	
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Estructura
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el que aparece el
acrónimo del grupo
GSDPI, con la
tipografía "Yanone
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empleada en la página
web oficial. El
acrónimo aparece
rodeado de puntos con
tamaños variables,
mayores en el centro, y
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perceptual rainbow)
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Visualización	de	datos	
otros	ejemplos
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fuente:  Narratives 2.0 Mattias Dittrich
http://www.matthiasdittrich.com/projekte/narratives/visualisation/index.html

fuente:
Mining massive document collections by the 
WEBSOM method. Krista Lagus, Samuel Kaski, ∗ and Teuvo Kohonen

Matrices ordenables
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practice

of data that we may wish to explore 
through visualization is relationship. 
For example, given a social network, 
who is friends with whom? Who are 
the central players? What cliques ex-
ist? Who, if anyone, serves as a bridge 
between disparate groups? Abstractly, 
a hierarchy is a specialized form of net-
work: each node has exactly one link 
to its parent, while the root node has 
no links. Thus node-link diagrams are 
also used to visualize networks, but the 
loss of hierarchy means a different al-
gorithm is required to position nodes.

Mathematicians use the formal 
term graph to describe a network. A 
central challenge in graph visualiza-
tion is computing an effective layout. 
Layout techniques typically seek to po-
sition closely related nodes (in terms 
of graph distance, such as the number 
of links between nodes, or other met-
rics) close in the drawing; critically, 
unrelated nodes must also be placed 
far enough apart to differentiate rela-
tionships. Some techniques may seek 
to optimize other visual features—for 
example, by minimizing the number 
of edge crossings.

Force-directed Layouts. A common 
and intuitive approach to network lay-
out is to model the graph as a physical 
system: nodes are charged particles that 
repel each other, and links are damp-
ened springs that pull related nodes 
together. A physical simulation of these 
forces then determines the node posi-
tions; approximation techniques that 
avoid computing all pairwise forces 
enable the layout of large numbers of 
nodes. In addition, interactivity allows 
the user to direct the layout and jiggle 
nodes to disambiguate links. Such a 
force-directed layout is a good starting 
point for understanding the structure 
of a general undirected graph. In Figure 
5a we use a force-directed layout to view 
the network of character co-occurrence 
in the chapters of Victor Hugo’s classic 
novel, Les Misérables. Node colors de-
pict cluster memberships computed by 
a community-detection algorithm.

Arc Diagrams. An arc diagram, 
shown in Figure 5b, uses a one-dimen-
sional layout of nodes, with circular 
arcs to represent links. Though an arc 
diagram may not convey the overall 
structure of the graph as effectively as 
a two-dimensional layout, with a good 
ordering of nodes it is easy to identify 

Networks: Figure 5a. Force-directed layout of Les Misérables character co-occurrences.

http://hci.stanford.edu/jheer/fi les/zoo/ex/networks/force.html
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Networks: Figure 5b. Arc diagram of Les Misérables character co-occurrences.

http://hci.stanford.edu/jheer/fi les/zoo/ex/networks/arc.html
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Networks: Figure 5c. Matrix view of Les Misérables character co-occurrences. 

http://hci.stanford.edu/jheer/fi les/zoo/ex/networks/matrix.html
Source: http://www-personal.umich.edu/~mejn/netdata

Coocurrencias de personajes en “Les Misérables”

fuente: Heer et al. 2010 “A tour through the Visualization zoo”

Mapas DR

fuente:
Mining massive document collections by the 
WEBSOM method. Krista Lagus, Samuel Kaski, ∗ and Teuvo 
Kohonen

fuente:
http://www.chrisharrison.net/projects/amazonviz/index.html

Visualizaciones masivas

fuente:		
h_p://www.chrisharrison.net/index.php/Visualiza3ons/AmazonMap

datos	de	consumos	eléctricos	en	UniLeón	
desarrollado	en	el	marco	de	DPI2015-69891-C2-2-R

fuente:	
h_p://www.chrisharrison.net/index.php/Visualiza3ons/ClusterBall

http://www.chrisharrison.net/index.php/Visualizations/AmazonMap
http://www.chrisharrison.net/index.php/Visualizations/ClusterBall
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Ideas para un logo de
GSDPI
Volver a la página de inicio 

Historial
Fecha
(creación/revisión)

Autor descripción

2016-10-12 Ignacio
Díaz

creación

2016-10-13 Ignacio
Díaz

modificación

Elementos del logo

Estructura
Se propone un logo en
el que aparece el
acrónimo del grupo
GSDPI, con la
tipografía "Yanone
Kaffeesatz", que es la
empleada en la página
web oficial. El
acrónimo aparece
rodeado de puntos con
tamaños variables,
mayores en el centro, y
con una variación de
tono (hue) que
produce una escala
perceptualmente
homogénea (Niccoli’s
perceptual rainbow)
que proporciona la
función
d3.interpolateCool(t).
La escala va desde el
amarillo verdoso en el
centro hasta violeta en
la periferia.
Finalmente, el logo

GSDPI Grupo de Supervisión y Diagnóstico  
de Procesos Industriales

Análisis	inteligente	de	datos	
estructura	en	los	datos	⟶	conocimiento
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Búsqueda	“algorítmica”	de	estructura	en	los	datos	

Desenredo	de	datos	en	espacios	mul3dimensionales	(“disentangling”)	

Técnicas	de	reducción	de	la	dimensionalidad…	pero	no	solo	ellas!
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Análisis	inteligente	de	datos	
estructura	en	los	datos	⟶	conocimiento
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Regresión Clasificación
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Reducción	de	la	dimensionalidad



Análisis	inteligente	de	datos 
reducción	de	la	dimensión	⟶	describiendo	similitudes

espacio	mul:dimensional	
con	vectores	de	descriptores	Rn

espacio	2D	
de	visualización

iesimo	vector	de	descriptores	
(vector	n-dim)

mapeo	DR p
x

(i), p
y

(i)
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Universidad	de	Oviedo

Ignacio	Díaz	Blanco,	2017

Principio	de	espacialización:	
“parecido”	↔ “cercano”
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Análisis	inteligente	de	datos	
deep	learning	⟶	“disentangling”	en	muy	alta	dimensión
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R2
<latexit sha1_base64="iMVMewb2JqiLxLFPPTAfU5Ibkrk=">AAAB7XicbVDLTgJBEOzFF+IL9ehlIjHxRHaJCXoj8eIRjSsksJLZoRcmzD6cmTUhG35DL8boyZ/xB/wbZ3EPCtapuqs6qWo/EVxp2/6ySiura+sb5c3K1vbO7l51/+BOxalk6LJYxLLrU4WCR+hqrgV2E4k09AV2/MllrnceUSoeR7d6mqAX0lHEA86oNiuvH1I99n1yc581ZoNqza7bc5Bl4hSkBgXag+pnfxizNMRIM0GV6jl2or2MSs2ZwFmlnypMKJvQEfYMjWiIysvmoWfkJIgl0WMk8/m3N6OhUtPQN548nlrU8uV/Wi/VwbmX8ShJNUbMWIwWpILomOTdyZBLZFpMDaFMcpOSsDGVlGnzoYqp7yyWXSZuo35Rd67Paq1G8YcyHMExnIIDTWjBFbTBBQYP8Axv8G4l1pP1Yr3+WEtWcXMIf2B9fAOE0Y8Z</latexit><latexit sha1_base64="iMVMewb2JqiLxLFPPTAfU5Ibkrk=">AAAB7XicbVDLTgJBEOzFF+IL9ehlIjHxRHaJCXoj8eIRjSsksJLZoRcmzD6cmTUhG35DL8boyZ/xB/wbZ3EPCtapuqs6qWo/EVxp2/6ySiura+sb5c3K1vbO7l51/+BOxalk6LJYxLLrU4WCR+hqrgV2E4k09AV2/MllrnceUSoeR7d6mqAX0lHEA86oNiuvH1I99n1yc581ZoNqza7bc5Bl4hSkBgXag+pnfxizNMRIM0GV6jl2or2MSs2ZwFmlnypMKJvQEfYMjWiIysvmoWfkJIgl0WMk8/m3N6OhUtPQN548nlrU8uV/Wi/VwbmX8ShJNUbMWIwWpILomOTdyZBLZFpMDaFMcpOSsDGVlGnzoYqp7yyWXSZuo35Rd67Paq1G8YcyHMExnIIDTWjBFbTBBQYP8Axv8G4l1pP1Yr3+WEtWcXMIf2B9fAOE0Y8Z</latexit><latexit sha1_base64="iMVMewb2JqiLxLFPPTAfU5Ibkrk=">AAAB7XicbVDLTgJBEOzFF+IL9ehlIjHxRHaJCXoj8eIRjSsksJLZoRcmzD6cmTUhG35DL8boyZ/xB/wbZ3EPCtapuqs6qWo/EVxp2/6ySiura+sb5c3K1vbO7l51/+BOxalk6LJYxLLrU4WCR+hqrgV2E4k09AV2/MllrnceUSoeR7d6mqAX0lHEA86oNiuvH1I99n1yc581ZoNqza7bc5Bl4hSkBgXag+pnfxizNMRIM0GV6jl2or2MSs2ZwFmlnypMKJvQEfYMjWiIysvmoWfkJIgl0WMk8/m3N6OhUtPQN548nlrU8uV/Wi/VwbmX8ShJNUbMWIwWpILomOTdyZBLZFpMDaFMcpOSsDGVlGnzoYqp7yyWXSZuo35Rd67Paq1G8YcyHMExnIIDTWjBFbTBBQYP8Axv8G4l1pP1Yr3+WEtWcXMIf2B9fAOE0Y8Z</latexit><latexit sha1_base64="iMVMewb2JqiLxLFPPTAfU5Ibkrk=">AAAB7XicbVDLTgJBEOzFF+IL9ehlIjHxRHaJCXoj8eIRjSsksJLZoRcmzD6cmTUhG35DL8boyZ/xB/wbZ3EPCtapuqs6qWo/EVxp2/6ySiura+sb5c3K1vbO7l51/+BOxalk6LJYxLLrU4WCR+hqrgV2E4k09AV2/MllrnceUSoeR7d6mqAX0lHEA86oNiuvH1I99n1yc581ZoNqza7bc5Bl4hSkBgXag+pnfxizNMRIM0GV6jl2or2MSs2ZwFmlnypMKJvQEfYMjWiIysvmoWfkJIgl0WMk8/m3N6OhUtPQN548nlrU8uV/Wi/VwbmX8ShJNUbMWIwWpILomOTdyZBLZFpMDaFMcpOSsDGVlGnzoYqp7yyWXSZuo35Rd67Paq1G8YcyHMExnIIDTWjBFbTBBQYP8Axv8G4l1pP1Yr3+WEtWcXMIf2B9fAOE0Y8Z</latexit>

Espacio	de	datos	
(alta	dimensionalidad)

Espacio	latente	
(baja	dimensionalidad)

encoder
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critical, judging from my experience as paper co-chair for IEEE
Visualization 2003 and 2004. In the early nineties, the field lay
fallow, and it was relatively easy to come up with new ideas. The
proceedings in the early nineties show a great diversity. Nowadays
the field is getting more specialized, submitted work consists often
of incremental results. This could signal that our field is getting ma-
ture. On the other hand, it is not always clear that these incremental
contributions have merit, and reviewers are getting more and more
critical. Thirdly, some big problems have been solved more or less
[14]. For volume rendering of medical data sophisticated industrial
packages that satisfy the needs of many users are available.

These trends urge a need to reconsider the field, and to think
about new directions. Several researchers have presented [7, 9, 17]
overviews of current challenges. Another great overview of the cur-
rent status of visualization and suggestions for new directions is
provided by the position papers [3] contributed by the attendants of
the joint NSF-NIH Fall 2004 Workshop on Visualization Research
Challenges, organized by Terry Yoo. Many issues are mentioned
several times, including handling of complex and large data sets,
uncertainty, validation, integration with the processes of the user,
and a better understanding of the visualization process itself. One
particularly impressive and disturbing contribution is [14], for its
title, the name and fame of the author, and the vivid description that
indeed the field has changed and new directions are needed.

In this paper no attempt is made to summarize or overview these
challenges, but the aim is to find a model or procedure to judge in
general if a method is worthwhile or not. In the following sections,
a first step towards such a model is presented. Much of it is evident
and obvious. As a defense, some open doors cannot be kicked open
often enough, and also, if obvious results would not come out, the
model and the underlying reasoning would be doubtful. Some state-
ments made are more surprising and sometimes contrary to main
stream thinking. To stimulate the debate, I have taken the liberty to
present these more extreme positions also, hoping that some readers
will not be offended too much.

3 MODEL

In this section a generic model on visualization is proposed. First,
the major ingredients are identified; secondly, costs and gains are
associated. The model is abstract and coarse, but it can be used to
identify some aspects, patterns and trends.

3.1 Visualization and its context

Figure 1 shows the basic model. Boxes denote containers, circles
denote processes that transform inputs into outputs. The aim here
is not to position different visualization methods, for which a tax-
onomy would be a more suitable approach, but rather to describe
the context in which visualization operates. No distinction is made,
for instance, between scientific visualization and information vi-
sualization, at this level there is much more they share than what
separates them.

In the following we describe the various steps. We use a mathe-
matical notation for this, merely as a concise shorthand and to give
a sense of quantification than as an exact and precise description.
Processes are defined as functions, but the domains and ranges of
these are ill-defined.

The central process in the model is visualization V :

I(t) = V (D,S, t).

Data D is transformed according to a specification S into a time
varying image I(t). All these should be considered in the broadest
sense. The type of data D to be visualized can vary from a single
bit to a time-varying 3D tensor field; the specification S includes
a specification of the hardware used, the algorithms to be applied

data uservisualization

VD KP

ES

I dK/dt

dS/dt

Figure 1: A simple model of visualization

(in the form of a selection of a predefined method or in the form of
code), and the specific parameters to be used; the image I will of-
ten be an image in the usual sense, but it can also be an animation,
or auditory or haptic feedback. In other words, this broad defini-
tion encompasses both a humble LED on an electronic device that
visualizes whether the device is on or off, as well as a large virtual
reality set-up to visualize the physical and chemical processes in the
atmosphere. The image I is perceived by a user, with an increase in
knowledge K as a result:

dK
dt

= P(I,K).

The amount of knowledge gained depends on the image, the current
knowledge of the user, and the particular properties of the percep-
tion and cognition P of the user. Concerning the influence of K, a
physician will be able to extract more information from a medical
image than a lay-person. But also, when already much knowledge is
available, the additional knowledge shown in an image can be low.
A map showing the provinces of the Netherlands provides more
new information to a person from the US than to a Dutch person.
Also, the additional value of an image of time-step 321 is probably
small when time-step 320 has been studied just before. Concerning
the influence of P, a simple but important example is that a color-
blind person will be less effective in extracting knowledge from a
colorful image than a person with full vision. But also, some people
are much better than others in spotting special patterns, structures,
and configurations.

The current knowledge K(t) follows from integration over time

K(t) = K0+
∫ t
0

P(I,K, t)dt

where K0 is the initial knowledge.
An important aspect is interactive exploration, here represented

by E(K). The user may decide to adapt the specification of the
visualization, based on his current knowledge, in order to explore
the data further

dS
dt

= E(K),

hence the current specification S(t) follows from integration over
time

S(t) = S0+
∫ t
0

E(K)dt

where S0 is the initial specification.

3.2 Economic Model

To assess if a visualization method is worthwhile, we must assess
its value. We propose to use profitability in an economic sense as

[1] J. Van Wijk. The value of visualization. In 16th IEEE Visualization 2005 (VIS 2005). IEEE Computer

Society, 2005.

Fuente

K = conocimiento 
P = percepción 
V = interfaz visual 
D = datos 
S = especificaciones de la vis. 
I = imagen 
E = Exploración interactiva

K(t) = K0 +

Z t

0
P (I,K, t)dt

Evolución	del	conocimiento		
durante	el	proceso	de	visualización	interac3va

S(t) = S0 +

Z t

0
E(K)dt

El	usuario	“modula”	las	especificaciones	
de	la		visualización	en	función	de	su	conocimiento

I(t) = V (D,S, t)

La	interfaz	visual	V	produce	una	imagen	I	
en	función	de	los	datos	D	y	las	especificaciones	S
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1.	Seleccionar	
marcar	algo	como	interesante

2.	Explorar	
mostrar	algo	más

3.	Reconfigurar	
ordenar	las	cosas	de	otra	forma

4.	Codificar	
mostrar	una	representación	diferente

5.	Abstraer/Elaborar	
mas	detalle	o	menos	detalle	(big	picture)

6.	Filtrar	
ver	sólo	lo	que	cumple	una	condición

7.	Conectar	
mostrar	los	items	relacionados
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Intelligent	Data	
Analysis	
(IDA)

VisualizaciónInteracción
Intuición	
In-sight	

Conocimiento
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VDdatos visualización

Idea	
Visualización	datos	en	un	póster	
o	está3ca	en	pantalla	de	ordenadorvisualización	está:ca	

de	datos
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VDdatos visualización

zoom,	desplazamiento,	
vistas	coordinadas,…	etc.

Idea	
Visualización	de	datos	en	pantalla	de	
ordenador	con	funciones	de	interacción	
lpicas:	zoom,	desplazamiento,	vistas	
coordinadas,	brush,	etc.

visualización	interac:va		
de	datos
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VD
datos

IDA

visualización

zoom,	desplazamiento,	
vistas	coordinadas,…	etc.

Idea	
Visualización	de	datos		
+	resultados	de	un	algoritmo	IDA	
en	pantalla	de	ordenador	con	funciones	de	
interacción	lpicas:	zoom,	desplazamiento,	
vistas	coordinadas,	brush,	etc

visualización	interac:va		
de	datos	+	resultados	de	IDA
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VD
datos

IDA

visualización

zoom,	desplazamiento,	
vistas	coordinadas,…	etc.

variación		
de	parámetros	
del	algoritmo

Idea	
además	de	las	funciones	de	interacción	
lpicas	(zoom,	etc.)	el	usuario	puede	
manipular	el	comportamiento	del	IDA	
variando	sus	parámetros	para	ver		
resultados	en	otros	contextos

visualización	interac:va	
de	datos	+		
manipulación	interac:va	de	IDA
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                     Edificio   Pact (KW)    cosPhi  THD Van (%)       T(C)  hour  week  weekday  month  dayofyear 
2010-03-01 00:00:00         5   14.425620  0.953855          0.0   7.823652     0     9        0      3         60 
2010-03-01 01:00:00         5   14.665796  0.954259          0.0   7.126155     1     9        0      3         60 
2010-03-01 02:00:00         5   12.007591  0.933131          0.0   7.488719     2     9        0      3         60 
2010-03-01 03:00:00         5   12.608106  0.939845          0.0   7.710455     3     9        0      3         60 
2010-03-01 04:00:00         5   16.145092  0.957809          0.0   7.114933     4     9        0      3         60 
2010-03-01 05:00:00         5   21.638385  0.952554          0.0   6.273484     5     9        0      3         60 
2010-03-01 06:00:00         5   19.207911  0.938453          0.0   5.830762     6     9        0      3         60 
2010-03-01 07:00:00         5   29.815537  0.943666          0.0   5.586618     7     9        0      3         60 
2010-03-01 08:00:00         5   62.869654  0.905892          0.0   5.677350     8     9        0      3         60 
2010-03-01 09:00:00         5   96.999449  0.893683          0.0   7.221909     9     9        0      3         60 
2010-03-01 10:00:00         5  115.899338  0.902373          0.0   8.914559    10     9        0      3         60 
2010-03-01 11:00:00         5  115.750337  0.898621          0.0  10.785449    11     9        0      3         60 
2010-03-01 12:00:00         5  113.689223  0.887986          0.0  11.807558    12     9        0      3         60 
2010-03-01 13:00:00         5   97.973818  0.873983          0.0  12.523772    13     9        0      3         60 
2010-03-01 14:00:00         5   62.232332  0.894678          0.0  13.008751    14     9        0      3         60 
2010-03-01 15:00:00         5   47.559666  0.886473          0.0  12.905749    15     9        0      3         60 
2010-03-01 16:00:00         5   61.865053  0.877000          0.0  12.307785    16     9        0      3         60 
2010-03-01 17:00:00         5   72.128616  0.881834          0.0  11.948900    17     9        0      3         60 
2010-03-01 18:00:00         5   76.023250  0.899110          0.0  11.038489    18     9        0      3         60 
2010-03-01 19:00:00         5   67.845450  0.899951          0.0  10.443579    19     9        0      3         60 
2010-03-01 20:00:00         5   45.527110  0.926689          0.0   9.490753    20     9        0      3         60 
2010-03-01 21:00:00         5   19.650929  0.967985          0.0   8.646537    21     9        0      3         60 
2010-03-01 22:00:00         5   13.698341  0.945193          0.0   7.629666    22     9        0      3         60 
2010-03-01 23:00:00         5   12.817378  0.946495          0.0   6.866202    23     9        0      3         60 
2010-03-02 00:00:00         5   13.934914  0.954740          0.0   5.837988     0     9        1      3         61 
2010-03-02 01:00:00         5   13.270300  0.950812          0.0   4.818204     1     9        1      3         61 
2010-03-02 02:00:00         5   12.724814  0.946554          0.0   4.202187     2     9        1      3         61 
2010-03-02 03:00:00         5   12.614464  0.947774          0.0   4.148451     3     9        1      3         61 
2010-03-02 04:00:00         5   13.122296  0.950718          0.0   3.681740     4     9        1      3         61 

 
2011-02-28 17:00:00         28  32.808913  0.929433        2.587   9.584414    17     9        0      2         59 
2011-02-28 18:00:00         28  35.892543  0.917200        2.366   8.495864    18     9        0      2         59 
2011-02-28 19:00:00         28  31.729217  0.922733        2.340   7.332595    19     9        0      2         59 
2011-02-28 20:00:00         28  27.129239  0.889200        2.340   6.175993    20     9        0      2         59 
2011-02-28 21:00:00         28  23.596643  0.933500        2.392   5.719882    21     9        0      2         59 
2011-02-28 22:00:00         28   7.263327  0.984700        2.366   5.617063    22     9        0      2         59 
2011-02-28 23:00:00         28   5.602116  0.985567        2.353   4.965097    23     9        0      2         59

tabla	de	datos	(csv,	xls,…)

Table 1: dimension attributes used in the interface
id label attribute

1 week week of year
2 hour hour
3 Pact (KW) active power (kW)
4 month month
5 T(C) temperature
6 Edificio building id
7 dayofyear day of year
8 weekday day of the week
9 THD Van (%) THD (%)

10 cosPhi power factor (cos �)

Table 2: list of buildings
id Building name

5 Filosofı́a
15 Animalario
16 INCAFD
17 Pabellón Deportivo
18 Frontón
19 Biblioteca Central
21 Cafeterı́a II
22 Molecular
23 Complejo Agrı́colas
24 Colegio Mayor
25 Complejo Rectorado
27 Minas
28 Centro Idiomas

3. Methods and techniques

3.1. Data cube terminology and operations

In this section we shall present several definitions and termi-
nology about data cube elements and operations, some of them
adapted from previous work [15, 16] to provide a formal de-
scription of the operations used for the energy demand analysis.

Measures. We shall define measures µ1, µ2, . . . , µp, as scalar
values that are the objects of analysis. Examples of measures
can be active-power, power-factor, temperature, etc.
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Figure 1: Data cube operations seen on a table.
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Figure 2: Dimension hierarchy.

Dimensions and attributes. The numeric measures depend on
a set of dimensions which provide context for the measure
[16], such as time, space, temperature, etc. A dimension
may be grouped in di↵erent ways, according to one or more
attributes with di↵erent levels of aggregation, that in some
cases can be organized into hierarchies, as seen in Fig. 2. For
instance, dimension time can be hierarchically grouped ac-
cording to attributes such as month, week, day, etc., allow-
ing also other interesting transversal categorizations such as
weekday or hour. Also measures can be used as dimensions
(e.g. temperature); a typical way to group continuously dis-
tributed measures is to partition the whole domain into inter-
vals or “bins”, as done in histograms. More formally, attributes
can be defined as sets of groups ai = {gi

1, g
i
2, . . . , g

i
|ai |}, where

the gi
j denotes the j-th group into which a dimension is parti-

tioned according to attribute ai, and |ai| is the cardinality of the
set ai. Thus, for instance, {Su, Mo, Tu, . . . , Sa} are groups of
attribute weekday of dimension time, while the temperature
ranges { [�20o, 0o), [0o, 20o), [20o, 40o] } can be groups form-
ing an attribute of dimension temperature.

Data cube. We shall define a data cube as a multidimensional
structure

C(a1, a2, . . . , an) (1)

where a1, a2, . . . , an are attributes. The data cube is a hypercube
structure composed of |a1| ⇥ |a2| ⇥ . . . ⇥ |an| cells. Each cell
is defined by its coordinates (g1, g2, . . . , gn), being gk a single
group chosen from attribute ak, and contains the set of records
that belong to the n groups g1, g2, . . . , gn that define the cell
position. Note that a cell can also contain an empty set.

Projection operation. Projection refers to selecting the at-
tributes used to view the cube —see Fig.1. This operation is
roughly equivalent to projection ⇧ in relational databases. Us-
ing the cube definition above

⇧ai1 ,...,aip
[C(a1, a2, . . . , an)] �! C(ai1 , ai2 , . . . , aip )

where {ai1 , . . . , aip } ⇢ {a1, a2, . . . , an}. Note that the projection
operation implies reducing the cube dimension by collapsing it
to leave only the attributes ai1 , . . . , aip (that is, “flattening” the
cube), which results in a reduced number of cells in the data
cube, but preserving the total number of records. This means

3
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Dimensions and attributes. The numeric measures depend on
a set of dimensions which provide context for the measure
[16], such as time, space, temperature, etc. A dimension
may be grouped in di↵erent ways, according to one or more
attributes with di↵erent levels of aggregation, that in some
cases can be organized into hierarchies, as seen in Fig. 2. For
instance, dimension time can be hierarchically grouped ac-
cording to attributes such as month, week, day, etc., allow-
ing also other interesting transversal categorizations such as
weekday or hour. Also measures can be used as dimensions
(e.g. temperature); a typical way to group continuously dis-
tributed measures is to partition the whole domain into inter-
vals or “bins”, as done in histograms. More formally, attributes
can be defined as sets of groups ai = {gi

1, g
i
2, . . . , g

i
|ai |}, where

the gi
j denotes the j-th group into which a dimension is parti-

tioned according to attribute ai, and |ai| is the cardinality of the
set ai. Thus, for instance, {Su, Mo, Tu, . . . , Sa} are groups of
attribute weekday of dimension time, while the temperature
ranges { [�20o, 0o), [0o, 20o), [20o, 40o] } can be groups form-
ing an attribute of dimension temperature.

Data cube. We shall define a data cube as a multidimensional
structure

C(a1, a2, . . . , an) (1)

where a1, a2, . . . , an are attributes. The data cube is a hypercube
structure composed of |a1| ⇥ |a2| ⇥ . . . ⇥ |an| cells. Each cell
is defined by its coordinates (g1, g2, . . . , gn), being gk a single
group chosen from attribute ak, and contains the set of records
that belong to the n groups g1, g2, . . . , gn that define the cell
position. Note that a cell can also contain an empty set.

Projection operation. Projection refers to selecting the at-
tributes used to view the cube —see Fig.1. This operation is
roughly equivalent to projection ⇧ in relational databases. Us-
ing the cube definition above

⇧ai1 ,...,aip
[C(a1, a2, . . . , an)] �! C(ai1 , ai2 , . . . , aip )

where {ai1 , . . . , aip } ⇢ {a1, a2, . . . , an}. Note that the projection
operation implies reducing the cube dimension by collapsing it
to leave only the attributes ai1 , . . . , aip (that is, “flattening” the
cube), which results in a reduced number of cells in the data
cube, but preserving the total number of records. This means
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La	tabla	equivale	a	un	
hipercubo	de	datos	
(aquí	sólo	mostramos	tres	atributos)
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Table 1: dimension attributes used in the interface
id label attribute

1 week week of year
2 hour hour
3 Pact (KW) active power (kW)
4 month month
5 T(C) temperature
6 Edificio building id
7 dayofyear day of year
8 weekday day of the week
9 THD Van (%) THD (%)

10 cosPhi power factor (cos �)
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3. Methods and techniques

3.1. Data cube terminology and operations

In this section we shall present several definitions and termi-
nology about data cube elements and operations, some of them
adapted from previous work [15, 16] to provide a formal de-
scription of the operations used for the energy demand analysis.

Measures. We shall define measures µ1, µ2, . . . , µp, as scalar
values that are the objects of analysis. Examples of measures
can be active-power, power-factor, temperature, etc.
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Figure 2: Dimension hierarchy.

Dimensions and attributes. The numeric measures depend on
a set of dimensions which provide context for the measure
[16], such as time, space, temperature, etc. A dimension
may be grouped in di↵erent ways, according to one or more
attributes with di↵erent levels of aggregation, that in some
cases can be organized into hierarchies, as seen in Fig. 2. For
instance, dimension time can be hierarchically grouped ac-
cording to attributes such as month, week, day, etc., allow-
ing also other interesting transversal categorizations such as
weekday or hour. Also measures can be used as dimensions
(e.g. temperature); a typical way to group continuously dis-
tributed measures is to partition the whole domain into inter-
vals or “bins”, as done in histograms. More formally, attributes
can be defined as sets of groups ai = {gi

1, g
i
2, . . . , g

i
|ai |}, where

the gi
j denotes the j-th group into which a dimension is parti-

tioned according to attribute ai, and |ai| is the cardinality of the
set ai. Thus, for instance, {Su, Mo, Tu, . . . , Sa} are groups of
attribute weekday of dimension time, while the temperature
ranges { [�20o, 0o), [0o, 20o), [20o, 40o] } can be groups form-
ing an attribute of dimension temperature.

Data cube. We shall define a data cube as a multidimensional
structure

C(a1, a2, . . . , an) (1)

where a1, a2, . . . , an are attributes. The data cube is a hypercube
structure composed of |a1| ⇥ |a2| ⇥ . . . ⇥ |an| cells. Each cell
is defined by its coordinates (g1, g2, . . . , gn), being gk a single
group chosen from attribute ak, and contains the set of records
that belong to the n groups g1, g2, . . . , gn that define the cell
position. Note that a cell can also contain an empty set.

Projection operation. Projection refers to selecting the at-
tributes used to view the cube —see Fig.1. This operation is
roughly equivalent to projection ⇧ in relational databases. Us-
ing the cube definition above

⇧ai1 ,...,aip
[C(a1, a2, . . . , an)] �! C(ai1 , ai2 , . . . , aip )

where {ai1 , . . . , aip } ⇢ {a1, a2, . . . , an}. Note that the projection
operation implies reducing the cube dimension by collapsing it
to leave only the attributes ai1 , . . . , aip (that is, “flattening” the
cube), which results in a reduced number of cells in the data
cube, but preserving the total number of records. This means
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celdas	
cada	celda	(dado	gris)	viene	definida	
por	una	tupla	de	n	grupos,	i.e.	
un	grupo	de	cada	uno	
de	los	atributos	del	cubo	
Cada	celda	puede	contener	
varios	registros	(puntos	azules)
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2 hour hour
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4 month month
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7 dayofyear day of year
8 weekday day of the week
9 THD Van (%) THD (%)
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3. Methods and techniques

3.1. Data cube terminology and operations

In this section we shall present several definitions and termi-
nology about data cube elements and operations, some of them
adapted from previous work [15, 16] to provide a formal de-
scription of the operations used for the energy demand analysis.

Measures. We shall define measures µ1, µ2, . . . , µp, as scalar
values that are the objects of analysis. Examples of measures
can be active-power, power-factor, temperature, etc.
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Dimensions and attributes. The numeric measures depend on
a set of dimensions which provide context for the measure
[16], such as time, space, temperature, etc. A dimension
may be grouped in di↵erent ways, according to one or more
attributes with di↵erent levels of aggregation, that in some
cases can be organized into hierarchies, as seen in Fig. 2. For
instance, dimension time can be hierarchically grouped ac-
cording to attributes such as month, week, day, etc., allow-
ing also other interesting transversal categorizations such as
weekday or hour. Also measures can be used as dimensions
(e.g. temperature); a typical way to group continuously dis-
tributed measures is to partition the whole domain into inter-
vals or “bins”, as done in histograms. More formally, attributes
can be defined as sets of groups ai = {gi

1, g
i
2, . . . , g

i
|ai |}, where

the gi
j denotes the j-th group into which a dimension is parti-

tioned according to attribute ai, and |ai| is the cardinality of the
set ai. Thus, for instance, {Su, Mo, Tu, . . . , Sa} are groups of
attribute weekday of dimension time, while the temperature
ranges { [�20o, 0o), [0o, 20o), [20o, 40o] } can be groups form-
ing an attribute of dimension temperature.

Data cube. We shall define a data cube as a multidimensional
structure

C(a1, a2, . . . , an) (1)

where a1, a2, . . . , an are attributes. The data cube is a hypercube
structure composed of |a1| ⇥ |a2| ⇥ . . . ⇥ |an| cells. Each cell
is defined by its coordinates (g1, g2, . . . , gn), being gk a single
group chosen from attribute ak, and contains the set of records
that belong to the n groups g1, g2, . . . , gn that define the cell
position. Note that a cell can also contain an empty set.

Projection operation. Projection refers to selecting the at-
tributes used to view the cube —see Fig.1. This operation is
roughly equivalent to projection ⇧ in relational databases. Us-
ing the cube definition above

⇧ai1 ,...,aip
[C(a1, a2, . . . , an)] �! C(ai1 , ai2 , . . . , aip )

where {ai1 , . . . , aip } ⇢ {a1, a2, . . . , an}. Note that the projection
operation implies reducing the cube dimension by collapsing it
to leave only the attributes ai1 , . . . , aip (that is, “flattening” the
cube), which results in a reduced number of cells in the data
cube, but preserving the total number of records. This means
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that some cells will store larger sets of records that were for-
merly divided according to groups of other attributes.

Selection operation. Let’s define the selection operation

�'C(a1, · · · , an)

as the result of selecting the records contained in C for which
the predicate ' is true. In general, the predicate ' can be any
logical expression on the cube attributes as in relational alge-
bra terminology. However, in typical cube operations, ' is of-
ten limited to selections of subsets of groups in one or more
attributes1. This results in a dice selection (since it yields a
smaller cube or “dice”; see Fig. 3 for an illustration of the
idea), as described in the data cube literature [15, 16, 14]. For
instance, for a0k = {a, b}, a0j = {p, q, r} we get

� ak=a0k
a j=a0j

[C(a1, a2, . . . , an)] �! (2)

�! C(a1, . . . , {a, b}|{z}
a0k

, . . . , {p, q, r}|  {z  }
a0j

, . . . , an)

The slice selection is a particular case of the dice selection that
arises when a single group a is selected from a single attribute
ak, that is, a0k = {a}

�ak=a0k [C(a1, a2, . . . , an)] �! C(a1, . . . , {a}|{z}
a0k

, . . . , an)

Aggregation operation. Let’s define the aggregation function
A as a function that takes the set of records associated to a cell
and yields a single value or object for summarizing purposes2.
Let’s assume that A can be applied to all the cells of the data
cube, producing an aggregated value or object per cell. We
define the aggregation operation as

AggAC(a1, . . . , an)

which returns a n-array of |a1|⇥|a2|⇥. . .⇥|an| aggregated values,
one per cell in the data cube. This array is often the last step
previous to reporting results in the data cube workflow.

The slice and dice selections are often complemented with
projection and aggregation in the data cube workflow for pro-
ducing summaries. An instance of a slice operation can be

Aggcount⇧Pact�month=MayC

It selects May from the month attribute (slice), projects the re-
sulting slice on attribute Pact (in this case, actually a specific
partition of measure Pact into “bins” or intervals), resulting in
a reorganization of the records on a 1D cube with the groups
(bins) of attribute Pact, and then counts the number of elements

1This limitation results in “cubic” or “dice” selections of records inside the
cube. Note, however, that despite the more general expressions for ', may
produce arbitrary empty cells in the cube, resulting in “non-cubic” selections
of records, this does not a↵ect the data cube nature and operations.

2In a more general sense, the aggregation result can be an object, for exam-
ple a structure with several summarizing properties.

of each group. In other words, these operations return a his-
togram of Pact for May.

Another example with a dice operation and a di↵erent aggre-
gation function can be

Aggavg(cosPhi)⇧hour� building={1,3,4}
weekday={Fr,Sa}

hour={11,12,13,14}

C

which does a dice selection by building, weekday and hour, re-
sulting in a smaller cube (a dice, see Fig. 3) and then a pro-
jection on the hour attribute, resulting in 1D cube with 4 cells,
one per selected hour, that contain all the records regardless the
building and weekday of the dice. Finally, the aggregation im-
plies in this case the computation of the average cosPhi for the
records on each cell, resulting in a 1-array of four values. In
Fig. 3 a picture of this operation along with the following two
operations

Aggsum(Pact)⇧building� building={1,3,4}
weekday={Fr,Sa}

hour={11,12,13,14}

C

Aggavg(Pact)⇧weekday� building={1,3,4}
weekday={Fr,Sa}

hour={11,12,13,14}

C

is shown.

Roll up and drill down. According to the previous operations,
roll-up and drill-down operations can be defined as recomput-
ing the aggregation on a di↵erent attribute of the same dimen-
sion with a di↵erent level of aggregation. Suppose two di↵erent
attributes of dimension time, namely, year = {2010,2011} and
lower level aggregation attribute quarter = {Q1-10, Q2-10,
Q3-10, Q4-10, Q1-11, Q2-11, Q3-11, Q4-11}, drill-down and
roll-up are achieved by recomputing aggregations of active
power Pact on both attributes

Aggavg(Pact)⇧yearC
drill�down�!

roll�up �
Aggavg(Pact)⇧quarterC

Fig. 2. provides a schematic description of the roll-up and
drill-down relationships among the attributes used in the tool
described in this paper.

4. Implementation

4.1. Data cube implementation
We used Crossfilter.js 3 for implementing e�cient client side

data cube operations. Crossfilter is a JavaScript library for ex-
ploring large multivariate datasets in a web browser, that sup-
ports fast data cube operations with datasets containing a mil-
lion or more records.

The Crossfilter library allows to build a data cube object from
an array of javascript objects, using the crossfilter construc-
tor method. The properties for each object in the array can be
selected to define dimension attributes (dimension method),
and specific groupings (group method) can be defined within

3
https://github.com/square/crossfilter
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Table 1: dimension attributes used in the interface
id label attribute

1 week week of year
2 hour hour
3 Pact (KW) active power (kW)
4 month month
5 T(C) temperature
6 Edificio building id
7 dayofyear day of year
8 weekday day of the week
9 THD Van (%) THD (%)

10 cosPhi power factor (cos �)

Table 2: list of buildings
id Building name

5 Filosofı́a
15 Animalario
16 INCAFD
17 Pabellón Deportivo
18 Frontón
19 Biblioteca Central
21 Cafeterı́a II
22 Molecular
23 Complejo Agrı́colas
24 Colegio Mayor
25 Complejo Rectorado
27 Minas
28 Centro Idiomas

3. Methods and techniques

3.1. Data cube terminology and operations

In this section we shall present several definitions and termi-
nology about data cube elements and operations, some of them
adapted from previous work [15, 16] to provide a formal de-
scription of the operations used for the energy demand analysis.

Measures. We shall define measures µ1, µ2, . . . , µp, as scalar
values that are the objects of analysis. Examples of measures
can be active-power, power-factor, temperature, etc.
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Figure 1: Data cube operations seen on a table.

Universidad	de	Oviedo

Dimension	Hierarchy

3

year	
(1)

hour	
(24)

weekday	
(7)

month	
(12)

cos	φ	
(100)

Pact	
(100)

temperature	
(100)

building	
(13)

dayofyear	
(365)

week	
(52)

ro
ll-
up

drill-dow
n

Figure 2: Dimension hierarchy.

Dimensions and attributes. The numeric measures depend on
a set of dimensions which provide context for the measure
[16], such as time, space, temperature, etc. A dimension
may be grouped in di↵erent ways, according to one or more
attributes with di↵erent levels of aggregation, that in some
cases can be organized into hierarchies, as seen in Fig. 2. For
instance, dimension time can be hierarchically grouped ac-
cording to attributes such as month, week, day, etc., allow-
ing also other interesting transversal categorizations such as
weekday or hour. Also measures can be used as dimensions
(e.g. temperature); a typical way to group continuously dis-
tributed measures is to partition the whole domain into inter-
vals or “bins”, as done in histograms. More formally, attributes
can be defined as sets of groups ai = {gi

1, g
i
2, . . . , g

i
|ai |}, where

the gi
j denotes the j-th group into which a dimension is parti-

tioned according to attribute ai, and |ai| is the cardinality of the
set ai. Thus, for instance, {Su, Mo, Tu, . . . , Sa} are groups of
attribute weekday of dimension time, while the temperature
ranges { [�20o, 0o), [0o, 20o), [20o, 40o] } can be groups form-
ing an attribute of dimension temperature.

Data cube. We shall define a data cube as a multidimensional
structure

C(a1, a2, . . . , an) (1)

where a1, a2, . . . , an are attributes. The data cube is a hypercube
structure composed of |a1| ⇥ |a2| ⇥ . . . ⇥ |an| cells. Each cell
is defined by its coordinates (g1, g2, . . . , gn), being gk a single
group chosen from attribute ak, and contains the set of records
that belong to the n groups g1, g2, . . . , gn that define the cell
position. Note that a cell can also contain an empty set.

Projection operation. Projection refers to selecting the at-
tributes used to view the cube —see Fig.1. This operation is
roughly equivalent to projection ⇧ in relational databases. Us-
ing the cube definition above

⇧ai1 ,...,aip
[C(a1, a2, . . . , an)] �! C(ai1 , ai2 , . . . , aip )

where {ai1 , . . . , aip } ⇢ {a1, a2, . . . , an}. Note that the projection
operation implies reducing the cube dimension by collapsing it
to leave only the attributes ai1 , . . . , aip (that is, “flattening” the
cube), which results in a reduced number of cells in the data
cube, but preserving the total number of records. This means

3
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Figure 3: Dice and aggregation operation on a data cube.

attributes, resulting in attribute group sets for further cube op-
erations. Once the data cube, the attributes and the groups have
been defined, the filter method allows to dice the cube by
selecting subsets of groups within one or more attributes (e.g.
for a range of values).

Finally, Crossfilter returns the aggregation values (top and
bottom methods) with count values as default or with user-
defined aggregations using map-reduce methods (reduceAdd,
reduceRemove, reduceInitial), allowing to implement ag-
gregations (e.g. sums and averages) on attribute groups in a
highly e�cient way.

4.2. Rendering visualizations

The Crossfilter methods for fast computation of aggregated
values are tightly integrated in a javascript web app that uses
D3.js [17] for rendering the results into coordinated and inter-
active histogram views, one per attribute in the data cube. Each
histogram also includes a vertical red bar showing the mean
value. Each view features a brush behavior, activated by mouse
drag gestures on the view, that allows the user to define a filter,
that defines a selection operation on the corresponding attribute.
The selection can be changed both modifying the limits of the
defined range by dragging the sides of the selection rectangle
and moving the current selection range by dragging the inner
area.

By default, all the views are configured as histograms, since
the default aggregation function is count, which simply counts
the number of elements in each group of the attribute for the
current selection. More precisely, for the view of attribute ai

Aggcount⇧ai�current selectionC

An input textbox allows the user to modify the behavior of
the views, by setting the type of aggregation (“avg”, “sum”,
or “count”) and the measure being aggregated, using a simple
syntax “attribute,aggregation,measure”. For instance
week,count,samples to define the view for attribute week as

a histogram,

Aggcount⇧week�current selectionC

hour,avg,cosPhi show average values of cosPhi per hour

Aggavg(cosPhi)⇧hour�current selectionC

During mouse drag operation, all aggregations are recom-
puted and all the views are instantaneously rendered, showing
the updated results for the current selection. This occurs on the
fly, in a fluid manner at rates close to 20 frames per second (us-
ing Safari browser, version 9.0.3, on an 2,4GHz intel core i7
macbookpro retina 8Gb, Early 2013).

In Fig. 4 a detailed description of the elements of a chart are
described for two di↵erent aggregation configurations.

4.3. Data preparation
We used python (specially pandas and JSON libraries) for

data import, curation, and organization into a JSON input data
file for the client application. Data originally available in large
binary files were imported into a python/pandas dataframe

structure, and timestamps were generated for every record, be-
ing later downsampled to 1 hour periods using average values.
Missing data within the hour period were ignored and only the
valid samples were used; when no valid data were available for
the hour period, the hourly measure was considered a missing
value. A further imputation method for such missing values
was carried out creating a pivot table with the average values
for the measures, using hour and weekday as pivot dimensions,
from which the missing values were taken.

To allow defining new attributes for meaningful categoriza-
tions of the data, additional helper columns week day, hour,
week of year, day of year and month were created from
the available timestamps. All these helper columns were used
as attributes for cube filtering and aggregation in the web appli-
cation.

Finally, data were restructured into javascript objects, one per
sample record (8760⇥13 records, a whole year of data for each
building) and packed in a JSON file.

5



Universidad	de	Oviedo

24/11/16 10:15Ideas para el logo de GSDPI

Página 1 de 5file:///Users/idiaz/Documents/git/diario-investigacion/2016-10-12-ideas-logo-gsdpi.html

Ideas para un logo de
GSDPI
Volver a la página de inicio 

Historial
Fecha
(creación/revisión)

Autor descripción

2016-10-12 Ignacio
Díaz

creación

2016-10-13 Ignacio
Díaz

modificación

Elementos del logo

Estructura
Se propone un logo en
el que aparece el
acrónimo del grupo
GSDPI, con la
tipografía "Yanone
Kaffeesatz", que es la
empleada en la página
web oficial. El
acrónimo aparece
rodeado de puntos con
tamaños variables,
mayores en el centro, y
con una variación de
tono (hue) que
produce una escala
perceptualmente
homogénea (Niccoli’s
perceptual rainbow)
que proporciona la
función
d3.interpolateCool(t).
La escala va desde el
amarillo verdoso en el
centro hasta violeta en
la periferia.
Finalmente, el logo

GSDPI Grupo de Supervisión y Diagnóstico  
de Procesos Industriales

Cubos	de	datos	intera3vos	
demo

38



Universidad	de	Oviedo

24/11/16 10:15Ideas para el logo de GSDPI

Página 1 de 5file:///Users/idiaz/Documents/git/diario-investigacion/2016-10-12-ideas-logo-gsdpi.html

Ideas para un logo de
GSDPI
Volver a la página de inicio 

Historial
Fecha
(creación/revisión)

Autor descripción

2016-10-12 Ignacio
Díaz

creación

2016-10-13 Ignacio
Díaz

modificación

Elementos del logo

Estructura
Se propone un logo en
el que aparece el
acrónimo del grupo
GSDPI, con la
tipografía "Yanone
Kaffeesatz", que es la
empleada en la página
web oficial. El
acrónimo aparece
rodeado de puntos con
tamaños variables,
mayores en el centro, y
con una variación de
tono (hue) que
produce una escala
perceptualmente
homogénea (Niccoli’s
perceptual rainbow)
que proporciona la
función
d3.interpolateCool(t).
La escala va desde el
amarillo verdoso en el
centro hasta violeta en
la periferia.
Finalmente, el logo

GSDPI Grupo de Supervisión y Diagnóstico  
de Procesos Industriales

Morphing	Projec3ons	
Selección	+	Exploración	+	Reconfiguración

39

Live	barcharts Mul:ple	selec:on

Visualización	interac:va	
de	demanda	eléctrica

Morphing Zoom	and	pan



Universidad	de	Oviedo

24/11/16 10:15Ideas para el logo de GSDPI

Página 1 de 5file:///Users/idiaz/Documents/git/diario-investigacion/2016-10-12-ideas-logo-gsdpi.html

Ideas para un logo de
GSDPI
Volver a la página de inicio 

Historial
Fecha
(creación/revisión)

Autor descripción

2016-10-12 Ignacio
Díaz

creación

2016-10-13 Ignacio
Díaz

modificación

Elementos del logo

Estructura
Se propone un logo en
el que aparece el
acrónimo del grupo
GSDPI, con la
tipografía "Yanone
Kaffeesatz", que es la
empleada en la página
web oficial. El
acrónimo aparece
rodeado de puntos con
tamaños variables,
mayores en el centro, y
con una variación de
tono (hue) que
produce una escala
perceptualmente
homogénea (Niccoli’s
perceptual rainbow)
que proporciona la
función
d3.interpolateCool(t).
La escala va desde el
amarillo verdoso en el
centro hasta violeta en
la periferia.
Finalmente, el logo

GSDPI Grupo de Supervisión y Diagnóstico  
de Procesos Industriales

Reducción	de	la	dimensionalida	interac3va 
(iDR)

40

The iDR approach

input
metrics

output
metrics

probabilities

probabilities

optimization

{y
i

}(k)

{x
i

}(k)

{y
i

}(k+1)

p

(k)
ij

q

(k)
ij

{y
i

}(k)
�C

�y

i

y

(k+1)
i

= y

(k)
i

+
�C

�y

i

{�
i

}(k)

{��
i

}(k)

p

ij

=
exp(� d

2
ij

2�i
)

�
k �=i

exp(� d

2
ik

2�i
)

d

�2
ij

= ky
i

� y

j

k2 q

ij

=
exp(� d

�2
ij

2�i
)

�
k �=i

exp(� d

�2
ik

2�i
)

d

�(k)
ij

⌦

(k)

d

2
ij

= kx
i

� x

j

k2
⌦

d

(k)
ij

gradient of the 
cost function C:

Fig. 2: Block diagram of the SNE algorithm at the k-th iteration

2.1.1 Time-varying input datasets

Let the input dataset be {x
i

}, where x
i

is a vector with n features x
i1, xi2, . . . , xin

.
The Q elements of the input dataset may change over time, resulting in a time-
varying dataset {x

i

}(k) at time k. Using the DR algorithm to visualize time-
varying datasets allows the user to understand not only the main relationships
and structure of data but also how these relationships evolve along time.

2.1.2 Changes in the metric of the input space

A simple but powerful interaction feature can stem from user-driven change in
the input space metric ⌦. Let’s consider the following weighted norm in the
input data space
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),
where we have dropped the repeated index in !

qq

and used !

q

instead, to sim-
plify notation. With this choice and an appropriate visual interface, the user
can vary the contribution of any variable to the DR projection by changing the
values of the weights !

q

. Any variable q for which !

q

= 0 would not contribute
to the DR projection (resulting in a pseudonorm). If a new weight matrix ⌦

(k)

is used by the DR algorithm at every iteration k, the DR algorithm will result
in a smooth transition (depending on the learning rate) to a new projection that
considers the relationships outlined by the new weight matrix. This mechanism
allows the user to quickly explore dependencies among the variables by selecting
subgroups in the interface. Moreover, since under changes in the metric ⌦(k) the
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Let the input dataset be {x
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}, where x
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is a vector with n features x
i1, xi2, . . . , xin
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The Q elements of the input dataset may change over time, resulting in a time-
varying dataset {x

i

}(k) at time k. Using the DR algorithm to visualize time-
varying datasets allows the user to understand not only the main relationships
and structure of data but also how these relationships evolve along time.

2.1.2 Changes in the metric of the input space

A simple but powerful interaction feature can stem from user-driven change in
the input space metric ⌦. Let’s consider the following weighted norm in the
input data space
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where we have dropped the repeated index in !
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and used !

q

instead, to sim-
plify notation. With this choice and an appropriate visual interface, the user
can vary the contribution of any variable to the DR projection by changing the
values of the weights !

q

. Any variable q for which !

q

= 0 would not contribute
to the DR projection (resulting in a pseudonorm). If a new weight matrix ⌦

(k)

is used by the DR algorithm at every iteration k, the DR algorithm will result
in a smooth transition (depending on the learning rate) to a new projection that
considers the relationships outlined by the new weight matrix. This mechanism
allows the user to quickly explore dependencies among the variables by selecting
subgroups in the interface. Moreover, since under changes in the metric ⌦(k) the

algorithm converges smoothly to a new stable state –that is, the DR projection
under the new metric–, changes can be tracked by the user, allowing to establish
links and find di↵erences between the new projection and the former one.

Interacting with the weights !

q

, the user can explore several kinds of non-
linear correlations between the variables. Suppose that the user has chosen
a set of K nonzero weights {!

q1 ,!q2 , . . . ,!qK}. If a 1-dimensional structure
–i.e. a snake-shaped figure– emerges after convergence in the projection, it re-
veals a mutual nonlinear dependency on an independent parameter t of the type
x

q1 = f

q1(t), xq2 = f

q2(t), . . . , xqK = f

qK (t). Note that this information is
much more general than the one provided by a linear correlation coe�cient or
the more general nonlinear correlations observable in scatter plots, which can
only be visualized for two variables in a single scatter plot.

A further collateral benefit of this kind of DR interaction is sensitivity anal-

ysis. Whenever the user modifies a single weight !
q

, the input distance pattern
d

ij

becomes more sensitive to variable q. This will be reflected as large dis-
placements in the projections of all elements that have significant di↵erences
in variable q with respect to the other ones. This sensitivity analysis is not
restricted to a single variable. Eventually, if the interface allows it, the user
could change the weights {!

q1 ,!q2 , . . . ,!qM } of a group of M variables at the
same time to discover elements that di↵er significantly in any of the variables
x

q1 , xq2 , . . . , xqM . Moreover, the displacement trajectories should be di↵erent for
elements with di↵erent patterns of variation within the group.

2.1.3 Interactive feature space transformations

Feature space transformations [8] allow improving the quality of an existing
embedding in terms of both structural preservation and class separation. One
simple feature extension scheme, for instance, is to augment each element x with
an extended feature set x̄

c(x) equal to the centroid of the class c(x) it belongs
to, thus forming an extended vector x

e

= [x, x̄
c(x)]. The DR projection of x

e

,
therefore contains class information, resulting in a more meaningful projection.
A user-driven variant of this approach, suitable for interaction, could involve a
weight factor �

x

e

(�) = [(1� �)x, �x̄
c(x)]

letting the user modify �

(k) and projecting x

e

(�(k)) at iteration level, the user
can control the balance between class separation and structural preservation. As
a result the user can set the optimum point or even move it to gain insight and
find connections between data structure and class knowledge.

3 Application demo: fault analysis of AC motor

A javascript application using the iDR approach was developed using process-

ing.js (http://processingjs.org), for the analysis of vibration data in a 4kW,
2 pole-pair asynchronous motor, where three vibration signals –measured in the
three axes a

x

(t), a
y

(t), a
z

(t)– and two phase currents i
R

(t), i
S

(t) were recorded

In the case of parametric dependency of this type
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User-driven modification of the distance metrics allows for detection of 
correlations in groups of variables

Example

DR methods yield an easily recognizable “snake shape” figure
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Abstract. In this work, we present a novel approach for data visualization based on interactive dimensionality 
reduction (iDR). The main idea of the paper relies on considering for visualization the intermediate results of non-
convex DR algorithms under changes on the metric of the input data space driven by the user. With an appropriate 
visualization interface, our approach allows the user to focus on the relationships among dynamically selected groups of 
variables, as well as to assess the impact of a single variable or groups of variables in the structure of the data.
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Abstract. In this work, we present a novel approach for data visualiza-
tion based on interactive dimensionality reduction (iDR). The main idea of
the paper relies on considering for visualization the intermediate results of
non-convex DR algorithms under changes on the metric of the input data
space driven by the user. With an appropriate visualization interface, our
approach allows the user to focus on the relationships among dynamically
selected groups of variables, as well as to assess the impact of a single
variable or groups of variables in the structure of the data.

1 Introduction

Many problems today involve the analysis of large datasets, which also contain
a very large number of variables from which the user should be able to find
meaningful relationships to acquire knowledge. The mere fact of obeying laws,
rules or restrictions arising from the problem domain, leads to dependencies that
make the intrinsic dimensionality of the data to be much smaller. Dimensionality
reduction (DR) algorithms –see [1] for a review– are able to find low dimensional
latent structures hidden in high dimensional data and produce a mapping on a
low dimensional space that preserves the underlying structure of data. They
are extremely useful tools in the field of visual analytics, since they provide an
advanced way for spatialization of data, allowing to create visual representa-
tions where spatial proximity between two items y

i

and y

j

in the visualization
represents similarity between x

i

and x

j

in a high dimensional space.
Another key ingredient in visual analytics is interaction. Interaction tech-

niques –zoom, pan, brushing, etc.– allow the user to reconfigure the visualization
to focus on the interesting aspects of data or to discard information that is ir-
relevant to the available knowledge of the user. In this paper we present a novel
approach for data visualization that suggests a low level integration of user in-
teraction into the DR computation and visualization process, by means of the
so-called interactive dimensionality reduction (iDR). In section 2 we describe
the iDR approach as a user-driven visualization of intermediate results of DR
algorithms, highlighting some of its potential applications, such as the analysis
of time-varying datasets or sensitivity analysis of data dependencies. In section
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Application demo: fault analysis of AC motor

Application interface with iDR user-driven modification of the input metric space
Javascript application using processingjs (http://processingjs.org)
Analysis of three vibration signals ax(t) ay(t) az(t) and two phase currents iR(t), iS(t)
of a 4kW 2 pole-pair asynchronous motor http://isa.uniovi.es/~idiaz/demos/iDR-vibracionesMotor/
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Fig. 2. Schematic of the rig setup (top) and time plot of the accelerometer signal for
the 9 experiments (bottom). The details in the bottom figure show up the change in
time series dynamics

4 Results

The rotation speed of the 2 pole-pair induction machine with no mechanical
load is very close to 1500 rpm –25 Hz-. Frequencies associated to mechanical
asymmetries will typically be 1⇥, 2⇥, · · · , n⇥ multiples of 25 Hz. Vibration com-
ponents produced by electrical imbalance are multiples –specially 2⇥– of the 50
Hz line frequency. For each of the 9 experiments, 35 dimensional feature vectors
containing energies in bands 25±1 Hz, 50±1 Hz, · · ·, 875±1 Hz, were computed
for 8192-point windows with an overlapping of 5%, by summing up the squared
modules of the FFT harmonics falling inside each band. To represent the process
behavior, four manifold learning –LTSA, LLE, laplacian eigenmaps (L-Eig) and
ISOMAP– methods were applied, with the parameters described in Table 2.

The projections obtained using the four methods are shown in Fig. 3, using
a color scale to represent the values of two dynamic features, namely, the energy
in the 25± 1 Hz band –which is specially sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to electrical imbalance. The four columns represent
the four DR methods and the two rows represent the features.

The results show that the four DR methods yield similar conclusions. All
the methods show in separate regions the four main conditions, namely, Normal,
Ecc, Imb-20 and Ecc+Imb. All the projections also show, as expected, smooth
continuous transitions between the normal and severe electrical imbalance con-
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Abstract. This paper describes a procedure based on the use of man-
ifold learning algorithms to visualize periodic –or nearly periodic– time
series produced by processes with di�erent underlying dynamics. The
proposed approach is done in two steps: a feature extraction stage, where
a set of descriptors in the frequency domain is extracted, and a mani-
fold learning stage that finds low dimensional structures in the feature
space and obtains projections on a low dimensional space for visualiza-
tion. This approach is applied on vibration data of an electromechanical
rotating machine to visualize di�erent vibration conditions under two
kinds of asymmetries, using four state-of-the-art manifold learning algo-
rithms for comparison purposes. In all cases, the methods yield consistent
results and produce insightful visualizations, suggesting future develop-
ments and application in engineering problems.

Keywords: manifold learning, dimensionality reduction, vibration anal-
ysis

1 Introduction

Many problems in machine learning involve a –sometimes very– large number of
variables. Examples of such problems can be found in image classification, text
mining, socioeconomic data analysis or process condition monitoring, just to
mention a few. In most cases, relationships –or constraints– among the observed
variables arise from physical laws, spatial or geometrical restrictions, redundancy
between two or more variables, etc. that make the problem depend on a reduced
set of factors that explain the observed behavior. The computation of a minimal
set of variables that describe these factors makes it possible to develop e�cient
data visualization methods with a large explanatory power.

The problem of finding a reduced set of latent variables that explain a large
dimensional set is closely related to dimensionality reduction (DR). DR Tech-
niques have been used for a long time. Maybe one of the first and most ever used
?? This work has been financed by the spanish Ministry of Science and Education and

FEDER funds under grants DPI2009-13398-C02-01/02

Manifold Learning for Visualization of
Vibrational States of a Rotating Machine

Ignacio Dı́az1, Abel A. Cuadrado1, Alberto B. Diez1, and Manuel Domı́nguez2

1 Area de Ingenieŕıa de Sistemas y Automática, Edificio departamental 2, Campus de
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Table 1. Description of the 9 experiments.

Experiment No. Label Descripction

#1 Ecc Mechanical eccentricity
#2 ’Ecc+Imb’ Mechanical eccentricity + Electrical imbalance
#3 ’Normal’ No eccentricity, no electrical imbalance.
#4 ’Imb-10’ Electrical imbalance (fixed load, 10 �)
#5 ’Imb-15’ Electrical imbalance (fixed load, 15 �)
#6 ’Imb-20’ Electrical imbalance (fixed load, 20 �)
#7 ’Imb-5’ Electrical imbalance (fixed load, 5 �)
#8 ’Imb-var-1’ Electrical imbalance (variable load, low⇥high⇥low)
#9 ’Imb-var-2’ Electrical imbalance (variable load, low⇥high)

Table 2. Four DR methods and parameters.

Method Parameters description

LTSA K = 100 K = 100 neighbors –see [17].
LLE K = 100, ⇥ = 0.1 K = 100 neighbors and regularizing factor ⇥ = 0.1 –see [10].
L-Eig ⇤ = 0.5, � = 0.5 Distances ⇤xi � xj⇤ previously normalized to the range [0, 1], the heat

kernel parameter is ⇤ = 0.5 and �-neighborhood � = 0.5 –see [1].
ISOMAP K = 100 K = 100 neighbors –see [14].

Fig. 3. Projections using the four methods.

ditions –Imb-5, Imb-10, Imb-15, Imb-var-1, Imb-var-2–, showing up good
consistency with the nature of the fault.

Some minor di�erences can be observed among the four methods. The com-
bined mechanical and electrical asymmetry Ecc+Imb reveals a small 1D variation
of its states in the LTSA, L-Eig and ISOMAP methods, and is reflected as a
small cluster in LLE method. Also, the continuous transition between the dif-
ferent degrees of electrical imbalances is better described in the LTSA, LLE and
ISOMAP, while the L-Eig method seems to show a dependency on two factors.
A more complete representation of the process dynamics can be obtained includ-
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C. Simultaneous Vibrations Sources

In an actual system, the complex electromechanical interac-
tions involved, usually produce different condition scenarios
from those studied previously when the fault causes are
analyzed separately. In these new situations, the identification
of root causes of failure is sometimes elusive due to the
complexity in uncoupling the mechanical failure causes and
their direct electrical effects [14].

The objective when exploring the current spectrum under
these circumstances, is to obtain useful information about
reliable current-vibration relationships through the different
working conditions in order to be capable of identifying these
different states by means of sensorless diagnosis.

III. EXPERIMENTAL SETUP

The test rig consists of one AC asynchronous machine of
4kW and two pole pairs, two accelerometers with a bandwidth
of 13 KHz and a 100 mV/g output, three Hall effect current
transducers, one RTD Pt-100 temperature sensor, a multichan-
nel low-pass filtering box and a powerful data acquisition,
processing and visualization software application which was
developed for process condition monitoring and has two main
modules: one for data acquisition and another one for feature
extraction [15].

Both accelerometers are mounted on the motor housing,
as shown in Fig. 1, to acquire the global motor vibration
levels. The analyzed faults are unbalances produced in two
ways: external vibrations –in this case the external source of
vibration is a mechanical asymmetry located as an eccentric
mass at the motor fan which rotates at a frequency fv

ext

of
30Hz– and mechanical imbalance –an oscillating torque is
caused by a revolving mass bolted to a disc and obviously
rotating at the motor frequency n of 25 Hz. Both the vibration
and current signals are low-pass filtered at 300Hz through
a 4th order Butterworth type filter in order to limit aliasing
distortion. The data acquisition module performs the task re-
lated to acquisition, storage and displaying of data as temporal
signals and its corresponding spectra obtained by means of
Fast Fourier Transform. The sampling frequency is 1000Hz.

Tests were carried out under 8 different vibration conditions
(two tests were done for each condition) combining two types
of vibration sources: mechanical imbalance (MI) by changing
the weight of the asymmetric mass (0, 2, 8 and 12 mass units),
and external vibration (EV, with and without). The labels for
each condition are summarized in Table I.

Label MI (in mass units) EV
0s 0 without
0c 0 with
2s 2 without
2c 2 with
8s 8 without
8c 8 with

12s 12 without
12c 12 with

TABLE I
LABELS FOR THE 8 VIBRATION CONDITIONS TESTED ON THE MOTOR.
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Fig. 2. Typical feature extraction process to compose the data matrix D.

IV. CORRELATION MINING TECHNIQUES

In this section we describe a set of techniques –some of
them widely used in data mining applications and others new
in the field– for correlation mining and its application to the
problem exposed in section II.

A. Feature extraction
Let’s suppose we have measured a variable d(t) at regular

time intervals with a sample period T

{ d(T ), d(2T ), · · · , d(kT ), · · · }

and computed the FFT harmonics at frequencies f1, f2, · · · , fn

at overlapped windows to obtain, for the kth window, the
feature vector

dk =
⇤
Df1

k ,Df2
k , · · · Df

n

k

⌅T
.

Joining the feature vectors, we can build a data matrix

D = (dij) = [d1,d2, · · · ,dN ]

where dij ⇥ Df
i

j represents the energy at frequency fi

evaluated at window j. This feature extraction process is
sketched in Fig. 2

In order to analyze the joint behavior of currents and
vibrations, it is possible to define an augmented data matrix
as

X =
�

I
A

⇥

where I and A are data matrices containing the current and
vibration harmonics respectively.

In order to find correlations between currents and vibrations,
a matrix of feature vectors was built containing the energies at
frequencies 5, 10, · · · , 200 Hz for current in one phase iR(t)
as well as for horizontal and vertical accelerations ah(t) and
av(t) using 8192�point windows with an overlapping of 50%.
All this gives a feature vector containing 40 current harmonics
and 80 acceleration harmonics.

xk = [i5R, i10R , · · · , i200R⌥ ⌃⇧ �
currents

, a5
h, · · · a200

h , a5
v, · · · , a200

v⌥ ⌃⇧ �
vibrations

]T

{f1, B1}

{f2, B2}

{fn, Bn}

Dimensionality
Reduction visualization

k-th signal buffer

Computation
of band 
energies

feature
vector
dk

d1k

d2k

dnk
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ing a larger set of features, resulting in spectrum representations. Since every
projected point is associated to a vector of energies at frequency bands, glyphs
at every projected position can be generated from energies of a whole frequency
range, resulting in a visualization like figure 4, that was obtained for projec-
tions of the LTSA method showing harmonics from 25 Hz to 200 Hz, in steps
of 25 Hz. Such representation gives a comprehensive view of the global behavior
of the signal frequency content. Also, it can be seen how the spectrum shape
changes continuously from the di�erent conditions, revealing the 1D nature of
the vibration conditions induced in the experiments.

Fig. 4. Map of projected spectra using LTSA. Note that the projections are spatially
distributed so that harmonics smoothly change across the vibration conditions.

5 Conclusions

In this paper we have proposed a procedure to explore the dynamic behavior of a
process composed of a feature extraction stage based on the frequency domain,
and a DR mapping using manifold learning algorithms for visualization. For
many kinds of engineering systems, the method is based on the assumption that
variations on their operating condition originated by a low number of factors
influence in nearly the same way all frequencies of the signal spectrum, lead-
ing to highly structured data in a properly chosen feature space. The proposed
method is applied to vibration analysis of a faulty induction motor. The results
show that vibration data produced under two di�erent kinds of faults (electrical
and mechanical asymmetries) produce low dimensional structures in the feature

Projections are spatially distributed
so that harmonics smoothly change 
across the vibration conditions.

Map of projected spectra (LTSA)
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Abstract. This paper describes a procedure based on the use of manifold learning algorithms
to visualize periodic –or nearly periodic– time series produced by processes with di�erent under-
lying dynamics. The proposed approach is done in two steps: a feature extraction stage, where a
set of descriptors in the frequency domain is extracted, and a manifold learning stage that finds
low dimensional structures in the feature space and obtains projections on a low dimensional
space for visualization. This approach is applied on vibration data of an electromechanical
rotating machine to visualize di�erent vibration conditions under two kinds of asymmetries,
using four state-of-the-art manifold learning algorithms for comparison purposes. In all cases,
the methods yield consistent results and produce insightful visualizations, suggesting future
developments and application in engineering problems.
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The test rig consists of one AC asyn-
chronous machine of 4kW and two pole
pairs, two accelerometers –only the hor-
izontal was used in this paper– with a
bandwidth of 13 KHz and a 100 mV/g
sensitivity, a multichannel low-pass fil-
tering box and a data acquisition card.
The accelerometer signal was previously
filtered using a 4th order Butterworth
filter to limit aliasing distortion and
later acquired with a 5000 Hz sample
rate.
The analyzed faults were induced by
two kinds of asymmetries: external vi-
brations produced by a mechanical ec-
centricity – a revolving mass bolted to
a disc causing an oscillating torque at
the rotating speed, near 25 Hz– and an
electrical imbalance caused by a vari-
able electrical load –a resistor– in one
of the phases. A total of nine exper-
iments were done, running the motor
under both kinds of faults and combi-
nations of these.

1

1 Feature Extraction

A windowed DFT transform is used to
avoid Gibbs e�ect

Yi =
N�1X

k=0

w(k)yke�j2�ik/N

i = 0, · · · , N � 1

where w(k) is a windowing function –
Hanning in this paper.
For the nth window yn, the energies in
bands around p specified center frequen-
cies f1, f2, · · · , fp with predefined band-
widths B1, B2, · · · , Bp can be computed
by summing up the squares of the har-
monics inside the bands, to obtain a p-
dimensional feature vector

dn = [d1n, d2n, · · · dpn]T

din =
vuut

X

k
NT 2[fi�

Bi
2 ,fi+

Bi
2 ]

⇥Yk⇥2

Feature vectors can be arranged into a
data matrix D = (din) = [d1,d2, · · ·],
where din represents the energy in the
band {fi, Bi} –that is, with center fre-
quency fi and width Bi–, for window
n.

3

1 Feature Extraction

A windowed DFT transform is used to
avoid Gibbs e�ect

Yi =
N�1X

k=0

w(k)yke�j2�ik/N

i = 0, · · · , N � 1

where w(k) is a windowing function –
Hanning in this paper.
For the nth window yn, the energies in
bands around p specified center frequen-
cies f1, f2, · · · , fp with predefined band-
widths B1, B2, · · · , Bp can be computed
by summing up the squares of the har-
monics inside the bands, to obtain a p-
dimensional feature vector

dn = [d1n, d2n, · · · dpn]T

din =
vuut

X

k
NT 2[fi�

Bi
2 ,fi+

Bi
2 ]

⇥Yk⇥2

Feature vectors can be arranged into a
data matrix D = (din) = [d1,d2, · · ·],
where din represents the energy in the
band {fi, Bi} –that is, with center fre-
quency fi and width Bi–, for window
n.

3

1 Feature Extraction

A windowed DFT transform is used to
avoid Gibbs e�ect

Yi =
N�1X

k=0

w(k)yke�j2�ik/N

i = 0, · · · , N � 1

where w(k) is a windowing function –
Hanning in this paper.
For the nth window yn, the energies in
bands around p specified center frequen-
cies f1, f2, · · · , fp with predefined band-
widths B1, B2, · · · , Bp can be computed
by summing up the squares of the har-
monics inside the bands, to obtain a p-
dimensional feature vector

dn = [d1n, d2n, · · · dpn]T

din =
vuut

X

k
NT 2[fi�

Bi
2 ,fi+

Bi
2 ]

⇥Yk⇥2

Feature vectors can be arranged into a
data matrix D = (din) = [d1,d2, · · ·],
where din represents the energy in the
band {fi, Bi} –that is, with center fre-
quency fi and width Bi–, for window
n.

3

Conclusions.

Procedure to explore the dynamic be-
havior of a process composed of a fea-
ture extraction stage based on the fre-
quency domain, and a DR mapping us-
ing manifold learning algorithms for vi-
sualization.

The method is based on the assumption
that variations on their operating condi-
tion originated by a low number of fac-
tors influence in nearly the same way
all frequencies of the signal spectrum,
leading to highly structured data in a
properly chosen feature space.

Results show that vibration data pro-
duced under two di�erent kinds of faults
(electrical and mechanical asymmetries)
produce low dimensional structures in
the feature space that can be e⇥ciently
unfolded with state-of-the-art DR meth-
ods.

The resulting projections can be e⇥-
ciently represented using visualization
methods that provide an insightful view
of the changing dynamics, suggesting
the potential use of the proposed ap-
proach in many problems in which vi-
sualization of dynamics is required such
as fault detection or industrial process
data mining.

The method can be adapted for on-
line monitoring using nonlinear interpo-
lation between the input and projected
points to project new data.
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A more complete representation of the
process dynamics can be obtained in-
cluding a larger set of features, result-
ing in spectrum representations. Since
every projected point is associated to a
vector of energies at frequency bands,
glyphs at every projected position can
be generated from energies of a whole
frequency range, resulting in the visual-
ization shown in the left figure, that was
obtained for projections of the LTSA
method showing harmonics from 25 Hz
to 200 Hz, in steps of 25 Hz.
Such representation gives a comprehen-
sive view of the global behavior of the
signal frequency content. Also, it can be
seen how the spectrum shape changes
continuously from the di�erent condi-
tions, revealing the 1D nature of the vi-
bration conditions induced in the exper-
iments.
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In many electromechanical systems, the
feature vector described above is invari-
ant for a given process condition. We
assume that the process condition de-
pends on a few factors. So, a rela-
tionship between the high dimensional
feature space and the low dimensional
space of factors that define the actual
process condition can be established.

Under this hypothesis, the problem is to
find latent low dimensional structures in
the feature space as, precisely, DR tech-
niques are aimed. Thus, DR techniques
can be applied to unfold the data on the
feature space. This yields a distribution
of the projections using a spatial distri-
bution that reflects the factors on which
the process conditions depend.

Combined with scatter plots using col-
ors and/or glyphs to represent features
or variables with a physical sense, this
provide insightful information on the
behavior of the process. In this work
four state-of-the-art methods, namely,
LTSA, LLE, L-Eig, and ISOMAP are
tested, showing that all produce insight-
ful results and lead to conceptually sim-
ilar conclusions.
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Color scale represents the values of two
dynamic features, namely, the energy in
the 25 ± 1 Hz band –which is specially
sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to elec-
trical imbalance. The four columns rep-
resent the four DR methods and the two
rows represent the features.
The results show that the four DR
methods yield similar conclusions. All
the methods show in separate regions
the four main conditions, namely,
Normal, Ecc, Imb-20 and Ecc+Imb. All
the projections also show, as expected,
smooth continuous transitions between
the normal and severe electrical im-
balance conditions –Imb-5, Imb-10,

Imb-15, Imb-var-1, Imb-var-2–,
showing up good consistency with the
nature of the fault.
Some minor di�erences can be observed
among the four methods. The com-
bined mechanical and electrical asym-
metry Ecc+Imb reveals a small 1D vari-
ation of its states in the LTSA, L-Eig
and ISOMAP methods, and is reflected
as a small cluster in LLE method.
Also, the continuous transition between
the di�erent degrees of electrical imbal-
ances is better described in the LTSA,
LLE and ISOMAP, while the L-Eig
method seems to show a dependency on
two factors.
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Table 1. Description of the 9 experiments.

Experiment No. Label Descripction

#1 Ecc Mechanical eccentricity
#2 ’Ecc+Imb’ Mechanical eccentricity + Electrical imbalance
#3 ’Normal’ No eccentricity, no electrical imbalance.
#4 ’Imb-10’ Electrical imbalance (fixed load, 10 �)
#5 ’Imb-15’ Electrical imbalance (fixed load, 15 �)
#6 ’Imb-20’ Electrical imbalance (fixed load, 20 �)
#7 ’Imb-5’ Electrical imbalance (fixed load, 5 �)
#8 ’Imb-var-1’ Electrical imbalance (variable load, low⇥high⇥low)
#9 ’Imb-var-2’ Electrical imbalance (variable load, low⇥high)

Table 2. Four DR methods and parameters.

Method Parameters description

LTSA K = 100 K = 100 neighbors –see [17].
LLE K = 100, ⇥ = 0.1 K = 100 neighbors and regularizing factor ⇥ = 0.1 –see [10].
L-Eig ⇤ = 0.5, � = 0.5 Distances ⇤xi � xj⇤ previously normalized to the range [0, 1], the heat

kernel parameter is ⇤ = 0.5 and �-neighborhood � = 0.5 –see [1].
ISOMAP K = 100 K = 100 neighbors –see [14].

Fig. 3. Projections using the four methods.

ditions –Imb-5, Imb-10, Imb-15, Imb-var-1, Imb-var-2–, showing up good
consistency with the nature of the fault.

Some minor di�erences can be observed among the four methods. The com-
bined mechanical and electrical asymmetry Ecc+Imb reveals a small 1D variation
of its states in the LTSA, L-Eig and ISOMAP methods, and is reflected as a
small cluster in LLE method. Also, the continuous transition between the dif-
ferent degrees of electrical imbalances is better described in the LTSA, LLE and
ISOMAP, while the L-Eig method seems to show a dependency on two factors.
A more complete representation of the process dynamics can be obtained includ-
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Fig. 2. Schematic of the rig setup (top) and time plot of the accelerometer signal for
the 9 experiments (bottom). The details in the bottom figure show up the change in
time series dynamics

4 Results

The rotation speed of the 2 pole-pair induction machine with no mechanical
load is very close to 1500 rpm –25 Hz-. Frequencies associated to mechanical
asymmetries will typically be 1�, 2�, · · · , n� multiples of 25 Hz. Vibration com-
ponents produced by electrical imbalance are multiples –specially 2�– of the 50
Hz line frequency. For each of the 9 experiments, 35 dimensional feature vectors
containing energies in bands 25±1 Hz, 50±1 Hz, · · ·, 875±1 Hz, were computed
for 8192-point windows with an overlapping of 5%, by summing up the squared
modules of the FFT harmonics falling inside each band. To represent the process
behavior, four manifold learning –LTSA, LLE, laplacian eigenmaps (L-Eig) and
ISOMAP– methods were applied, with the parameters described in Table 2.

The projections obtained using the four methods are shown in Fig. 3, using
a color scale to represent the values of two dynamic features, namely, the energy
in the 25± 1 Hz band –which is specially sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to electrical imbalance. The four columns represent
the four DR methods and the two rows represent the features.

The results show that the four DR methods yield similar conclusions. All
the methods show in separate regions the four main conditions, namely, Normal,
Ecc, Imb-20 and Ecc+Imb. All the projections also show, as expected, smooth
continuous transitions between the normal and severe electrical imbalance con-
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The test rig consists of one AC asyn-
chronous machine of 4kW and two pole
pairs, two accelerometers –only the hor-
izontal was used in this paper– with a
bandwidth of 13 KHz and a 100 mV/g
sensitivity, a multichannel low-pass fil-
tering box and a data acquisition card.
The accelerometer signal was previously
filtered using a 4th order Butterworth
filter to limit aliasing distortion and
later acquired with a 5000 Hz sample
rate.
The analyzed faults were induced by
two kinds of asymmetries: external vi-
brations produced by a mechanical ec-
centricity – a revolving mass bolted to
a disc causing an oscillating torque at
the rotating speed, near 25 Hz– and an
electrical imbalance caused by a vari-
able electrical load –a resistor– in one
of the phases. A total of nine exper-
iments were done, running the motor
under both kinds of faults and combi-
nations of these.
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A windowed DFT transform is used to
avoid Gibbs e�ect
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where w(k) is a windowing function –
Hanning in this paper.
For the nth window yn, the energies in
bands around p specified center frequen-
cies f1, f2, · · · , fp with predefined band-
widths B1, B2, · · · , Bp can be computed
by summing up the squares of the har-
monics inside the bands, to obtain a p-
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where din represents the energy in the
band {fi, Bi} –that is, with center fre-
quency fi and width Bi–, for window
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C. Simultaneous Vibrations Sources

In an actual system, the complex electromechanical interac-
tions involved, usually produce different condition scenarios
from those studied previously when the fault causes are
analyzed separately. In these new situations, the identification
of root causes of failure is sometimes elusive due to the
complexity in uncoupling the mechanical failure causes and
their direct electrical effects [14].

The objective when exploring the current spectrum under
these circumstances, is to obtain useful information about
reliable current-vibration relationships through the different
working conditions in order to be capable of identifying these
different states by means of sensorless diagnosis.

III. EXPERIMENTAL SETUP

The test rig consists of one AC asynchronous machine of
4kW and two pole pairs, two accelerometers with a bandwidth
of 13 KHz and a 100 mV/g output, three Hall effect current
transducers, one RTD Pt-100 temperature sensor, a multichan-
nel low-pass filtering box and a powerful data acquisition,
processing and visualization software application which was
developed for process condition monitoring and has two main
modules: one for data acquisition and another one for feature
extraction [15].

Both accelerometers are mounted on the motor housing,
as shown in Fig. 1, to acquire the global motor vibration
levels. The analyzed faults are unbalances produced in two
ways: external vibrations –in this case the external source of
vibration is a mechanical asymmetry located as an eccentric
mass at the motor fan which rotates at a frequency fv

ext

of
30Hz– and mechanical imbalance –an oscillating torque is
caused by a revolving mass bolted to a disc and obviously
rotating at the motor frequency n of 25 Hz. Both the vibration
and current signals are low-pass filtered at 300Hz through
a 4th order Butterworth type filter in order to limit aliasing
distortion. The data acquisition module performs the task re-
lated to acquisition, storage and displaying of data as temporal
signals and its corresponding spectra obtained by means of
Fast Fourier Transform. The sampling frequency is 1000Hz.

Tests were carried out under 8 different vibration conditions
(two tests were done for each condition) combining two types
of vibration sources: mechanical imbalance (MI) by changing
the weight of the asymmetric mass (0, 2, 8 and 12 mass units),
and external vibration (EV, with and without). The labels for
each condition are summarized in Table I.

Label MI (in mass units) EV
0s 0 without
0c 0 with
2s 2 without
2c 2 with
8s 8 without
8c 8 with

12s 12 without
12c 12 with

TABLE I
LABELS FOR THE 8 VIBRATION CONDITIONS TESTED ON THE MOTOR.
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Fig. 2. Typical feature extraction process to compose the data matrix D.

IV. CORRELATION MINING TECHNIQUES

In this section we describe a set of techniques –some of
them widely used in data mining applications and others new
in the field– for correlation mining and its application to the
problem exposed in section II.

A. Feature extraction
Let’s suppose we have measured a variable d(t) at regular

time intervals with a sample period T

{ d(T ), d(2T ), · · · , d(kT ), · · · }

and computed the FFT harmonics at frequencies f1, f2, · · · , fn

at overlapped windows to obtain, for the kth window, the
feature vector

dk =
⇤
Df1

k ,Df2
k , · · · Df

n

k

⌅T
.

Joining the feature vectors, we can build a data matrix

D = (dij) = [d1,d2, · · · ,dN ]

where dij ⇥ Df
i

j represents the energy at frequency fi

evaluated at window j. This feature extraction process is
sketched in Fig. 2

In order to analyze the joint behavior of currents and
vibrations, it is possible to define an augmented data matrix
as

X =
�

I
A

⇥

where I and A are data matrices containing the current and
vibration harmonics respectively.

In order to find correlations between currents and vibrations,
a matrix of feature vectors was built containing the energies at
frequencies 5, 10, · · · , 200 Hz for current in one phase iR(t)
as well as for horizontal and vertical accelerations ah(t) and
av(t) using 8192�point windows with an overlapping of 50%.
All this gives a feature vector containing 40 current harmonics
and 80 acceleration harmonics.

xk = [i5R, i10R , · · · , i200R⌥ ⌃⇧ �
currents

, a5
h, · · · a200

h , a5
v, · · · , a200

v⌥ ⌃⇧ �
vibrations

]T

1 Feature Extraction

A windowed DFT transform is used to
avoid Gibbs e�ect

Yi =
N�1X

k=0

w(k)yke�j2�ik/N

i = 0, · · · , N � 1

where w(k) is a windowing function –
Hanning in this paper.
For the nth window yn, the energies in
bands around p specified center frequen-
cies f1, f2, · · · , fp with predefined band-
widths B1, B2, · · · , Bp can be computed
by summing up the squares of the har-
monics inside the bands, to obtain a p-
dimensional feature vector

dn = [d1n, d2n, · · · dpn]T

din =
vuut

X

k
NT 2[fi�

Bi
2 ,fi+

Bi
2 ]

⇥Yk⇥2

Feature vectors can be arranged into a
data matrix D = (din) = [d1,d2, · · ·],
where din represents the energy in the
band {fi, Bi} –that is, with center fre-
quency fi and width Bi–, for window
n.

3

In many electromechanical systems, the
feature vector described above is invari-
ant for a given process condition. We
assume that the process condition de-
pends on a few factors. So, a rela-
tionship between the high dimensional
feature space and the low dimensional
space of factors that define the actual
process condition can be established.

Under this hypothesis, the problem is to
find latent low dimensional structures in
the feature space as, precisely, DR tech-
niques are aimed. Thus, DR techniques
can be applied to unfold the data on the
feature space. This yields a distribution
of the projections using a spatial distri-
bution that reflects the factors on which
the process conditions depend.

Combined with scatter plots using col-
ors and/or glyphs to represent features
or variables with a physical sense, this
provide insightful information on the
behavior of the process.

In this work four state-of-the-art meth-
ods, namely, LTSA, LLE, L-Eig, and
ISOMAP are tested, showing that all
produce insightful results and lead to
conceptually similar conclusions.
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Sensitivity analysis
Whenever the user increases a single weight “wq” the input 
distance pattern dij becomes more sensitive to variable q. Points 
(samples) showing significantly large deviations in variable q, will 
move apart upon changes in wq, thus revealing their dependency 
on variable q.

wq wq

3 we describe an application demo of the iDR idea for the visual analysis of fault
states in a rotating machine. Finally, section 4 concludes the paper.

2 The interactive Dimensionality Reduction approach

In the typical procedure to use DR algorithms for visual analytics, interaction
is often done after DR computation on the input dataset. The user sets up an
initial configuration for the DR algorithm, runs it until convergence and, after N
iterations, the output results are used to produce a visualization. The user may
later use interaction techniques to reconfigure this visualization or even decide to
run the DR algorithm again using another parameterization, starting the cycle
again –see for instance [2]. This approach can be thought of as a batch mode

interaction scheme for DR visual analytics.

DR algorithm

iteration

DR Code Output Visualization

Interaction

Interaction

DR algorithm

iteration

DR Code Output Visualization

Interaction

Interaction

Fig. 1: Batch mode interaction scheme (left) vs. the iDR approach (right)

However, interaction can go far beyond this approach, allowing the user to
take full control of the DR behavior by means of iterative reconfiguration of

computational algorithms [3]. The right picture in Fig. 1, shows the main idea
of this approach for DR analysis, where the intermediate results are used to
produce a visualization at each iteration. The result is a dynamically changing
visualization that allows the user to track changes in the resulting projection
under changes in the problem formulation, such as, for instance, user-driven
changes of the metric in the input space (e.g. by modifying the weights of the
input variables), or under time-varying input data (e.g. in dynamic processes
where the elements of the input dataset change with time). Despite this approach
is still rather unexplored, a few related works can be found, as an interactive
version of PCA [4] and an interactive learning of distance functions [5].

2.1 Applications of the iDR approach

To allow interaction, we shall consider iterative algorithms, such as Stochastic
Neighbor Embedding (SNE) [6] or the Neigborhood Retrieval Visualizer (NeRV)
[7]. For simplicity, let’s consider a block diagram of the SNE algorithm for the
k-th iteration –see Fig. 2. Some of the inputs –data or parameters– to the
algorithm can change or be changed by the user at each iteration.

batch mode interaction scheme iDR interaction scheme

set initial configuration
run until convergence (N steps)

visualize the results
fine-tune the DR algorithm

run 1step 
visualize the results

set initial configuration

fine-tune
the DR algorithm

quick!
~10-1s

slow!
~101s

enables a quick feedback to the user
and hence a much better user integration
in the exploration process

3.   Interactive incorporation of class knowledge

original space class space

algorithm converges smoothly to a new stable state –that is, the DR projection
under the new metric–, changes can be tracked by the user, allowing to establish
links and find di↵erences between the new projection and the former one.

Interacting with the weights !

q

, the user can explore several kinds of non-
linear correlations between the variables. Suppose that the user has chosen
a set of K nonzero weights {!

q1 ,!q2 , . . . ,!qK}. If a 1-dimensional structure
–i.e. a snake-shaped figure– emerges after convergence in the projection, it re-
veals a mutual nonlinear dependency on an independent parameter t of the type
x

q1 = f

q1(t), xq2 = f

q2(t), . . . , xqK = f

qK (t). Note that this information is
much more general than the one provided by a linear correlation coe�cient or
the more general nonlinear correlations observable in scatter plots, which can
only be visualized for two variables in a single scatter plot.

A further collateral benefit of this kind of DR interaction is sensitivity anal-

ysis. Whenever the user modifies a single weight !
q

, the input distance pattern
d

ij

becomes more sensitive to variable q. This will be reflected as large dis-
placements in the projections of all elements that have significant di↵erences
in variable q with respect to the other ones. This sensitivity analysis is not
restricted to a single variable. Eventually, if the interface allows it, the user
could change the weights {!

q1 ,!q2 , . . . ,!qM } of a group of M variables at the
same time to discover elements that di↵er significantly in any of the variables
x

q1 , xq2 , . . . , xqM . Moreover, the displacement trajectories should be di↵erent for
elements with di↵erent patterns of variation within the group.

2.1.3 Interactive feature space transformations

Feature space transformations [8] allow improving the quality of an existing
embedding in terms of both structural preservation and class separation. One
simple feature extension scheme, for instance, is to augment each element x with
an extended feature set x̄

c(x) equal to the centroid of the class c(x) it belongs
to, thus forming an extended vector x

e

= [x, x̄
c(x)]. The DR projection of x

e

,
therefore contains class information, resulting in a more meaningful projection.
A user-driven variant of this approach, suitable for interaction, could involve a
weight factor �

x

e

(�) = [(1� �)x, �x̄
c(x)]

letting the user modify �

(k) and projecting x

e

(�(k)) at iteration level, the user
can control the balance between class separation and structural preservation. As
a result the user can set the optimum point or even move it to gain insight and
find connections between data structure and class knowledge.

3 Application demo: fault analysis of AC motor

A javascript application using the iDR approach was developed using process-

ing.js (http://processingjs.org), for the analysis of vibration data in a 4kW,
2 pole-pair asynchronous motor, where three vibration signals –measured in the
three axes a

x

(t), a
y

(t), a
z

(t)– and two phase currents i
R

(t), i
S

(t) were recorded

the lambda factor allows to balance between pure 
class info (a set of a few centroids) and the original 
data
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original data point in the input space

λ

xc(x) the centroid for class c(x)
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Fig. 2: Block diagram of the SNE algorithm at the k-th iteration

2.1.1 Time-varying input datasets

Let the input dataset be {x
i

}, where x
i

is a vector with n features x
i1, xi2, . . . , xin

.
The Q elements of the input dataset may change over time, resulting in a time-
varying dataset {x

i

}(k) at time k. Using the DR algorithm to visualize time-
varying datasets allows the user to understand not only the main relationships
and structure of data but also how these relationships evolve along time.

2.1.2 Changes in the metric of the input space

A simple but powerful interaction feature can stem from user-driven change in
the input space metric ⌦. Let’s consider the following weighted norm in the
input data space

kxk2
⌦

:=
X

r

X

s

x

r

!

rs

x

s

. (1)

Using the metric induced by the previously defined weighted norm, the input dis-
tances between input points x

i

and x

j

would be d
ij

= kx
i

�x

j

k
⌦

. Let’s consider
the special case where the weight matrix ⌦ is diagonal ⌦ = diag(!1,!2, . . . ,!n

),
where we have dropped the repeated index in !

qq

and used !

q

instead, to sim-
plify notation. With this choice and an appropriate visual interface, the user
can vary the contribution of any variable to the DR projection by changing the
values of the weights !

q

. Any variable q for which !

q

= 0 would not contribute
to the DR projection (resulting in a pseudonorm). If a new weight matrix ⌦

(k)

is used by the DR algorithm at every iteration k, the DR algorithm will result
in a smooth transition (depending on the learning rate) to a new projection that
considers the relationships outlined by the new weight matrix. This mechanism
allows the user to quickly explore dependencies among the variables by selecting
subgroups in the interface. Moreover, since under changes in the metric ⌦(k) the

iDR approach using the SNE algorithm
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item iitem i

item i

item i

item i

item i

{xi}(k�1) {xi}(k) {xi}(k+1)

dataset at time k-1 dataset at time k dataset at time k+1

projection at time k-1 projection at time k projection at time k+1
{yi}(k+1){yi}(k){yi}(k�1)

Analysis of a fixed set of samples, each one characterized by a set of measurements that 
evolve with time (e.g., analysis of a batch of fruits, analysis of the evolution of a set of 
patients on an epidemics, time evolution of social networks, etc.)

2.   Changes in the metric of the input space

input
metrics

output
metrics

probabilities

probabilities

optimization

{y
i

}(k)

{x
i

}(k)

{y
i

}(k+1)

p

(k)
ij

q

(k)
ij

{y
i

}(k)
�C

�y

i

y

(k+1)
i

= y

(k)
i

+
�C

�y

i

{�
i

}(k)

{��
i

}(k)

p

ij

=
exp(� d

2
ij

2�i
)

�
k �=i

exp(� d

2
ik

2�i
)

d

�2
ij

= ky
i

� y

j

k2 q

ij

=
exp(� d

�2
ij

2�i
)

�
k �=i

exp(� d

�2
ik

2�i
)

d

�(k)
ij

⌦

(k)

d

2
ij

= kx
i

� x

j

k2
⌦

d

(k)
ij

gradient of the 
cost function C:

Fig. 2: Block diagram of the SNE algorithm at the k-th iteration

2.1.1 Time-varying input datasets

Let the input dataset be {x
i

}, where x
i

is a vector with n features x
i1, xi2, . . . , xin

.
The Q elements of the input dataset may change over time, resulting in a time-
varying dataset {x

i

}(k) at time k. Using the DR algorithm to visualize time-
varying datasets allows the user to understand not only the main relationships
and structure of data but also how these relationships evolve along time.

2.1.2 Changes in the metric of the input space

A simple but powerful interaction feature can stem from user-driven change in
the input space metric ⌦. Let’s consider the following weighted norm in the
input data space

kxk2
⌦

:=
X

r

X

s

x

r

!

rs

x

s

. (1)

Using the metric induced by the previously defined weighted norm, the input dis-
tances between input points x

i

and x

j

would be d
ij

= kx
i

�x

j

k
⌦

. Let’s consider
the special case where the weight matrix ⌦ is diagonal ⌦ = diag(!1,!2, . . . ,!n

),
where we have dropped the repeated index in !

qq

and used !

q

instead, to sim-
plify notation. With this choice and an appropriate visual interface, the user
can vary the contribution of any variable to the DR projection by changing the
values of the weights !

q

. Any variable q for which !

q

= 0 would not contribute
to the DR projection (resulting in a pseudonorm). If a new weight matrix ⌦

(k)

is used by the DR algorithm at every iteration k, the DR algorithm will result
in a smooth transition (depending on the learning rate) to a new projection that
considers the relationships outlined by the new weight matrix. This mechanism
allows the user to quickly explore dependencies among the variables by selecting
subgroups in the interface. Moreover, since under changes in the metric ⌦(k) the

input
metrics

output
metrics

probabilities

probabilities

optimization

{y
i

}(k)

{x
i

}(k)

{y
i

}(k+1)

p

(k)
ij

q

(k)
ij

{y
i

}(k)
�C

�y

i

y

(k+1)
i

= y

(k)
i

+
�C

�y

i

{�
i

}(k)

{��
i

}(k)

p

ij

=
exp(� d

2
ij

2�i
)

�
k �=i

exp(� d

2
ik

2�i
)

d

�2
ij

= ky
i

� y

j

k2 q

ij

=
exp(� d

�2
ij

2�i
)

�
k �=i

exp(� d

�2
ik

2�i
)

d

�(k)
ij

⌦

(k)

d

2
ij

= kx
i

� x

j

k2
⌦

d

(k)
ij

gradient of the 
cost function C:

Fig. 2: Block diagram of the SNE algorithm at the k-th iteration

2.1.1 Time-varying input datasets

Let the input dataset be {x
i

}, where x
i

is a vector with n features x
i1, xi2, . . . , xin

.
The Q elements of the input dataset may change over time, resulting in a time-
varying dataset {x

i

}(k) at time k. Using the DR algorithm to visualize time-
varying datasets allows the user to understand not only the main relationships
and structure of data but also how these relationships evolve along time.

2.1.2 Changes in the metric of the input space

A simple but powerful interaction feature can stem from user-driven change in
the input space metric ⌦. Let’s consider the following weighted norm in the
input data space

kxk2
⌦

:=
X

r

X

s

x

r

!

rs

x

s

. (1)

Using the metric induced by the previously defined weighted norm, the input dis-
tances between input points x

i

and x

j

would be d
ij

= kx
i

�x

j

k
⌦

. Let’s consider
the special case where the weight matrix ⌦ is diagonal ⌦ = diag(!1,!2, . . . ,!n

),
where we have dropped the repeated index in !

qq

and used !

q

instead, to sim-
plify notation. With this choice and an appropriate visual interface, the user
can vary the contribution of any variable to the DR projection by changing the
values of the weights !

q

. Any variable q for which !

q

= 0 would not contribute
to the DR projection (resulting in a pseudonorm). If a new weight matrix ⌦

(k)

is used by the DR algorithm at every iteration k, the DR algorithm will result
in a smooth transition (depending on the learning rate) to a new projection that
considers the relationships outlined by the new weight matrix. This mechanism
allows the user to quickly explore dependencies among the variables by selecting
subgroups in the interface. Moreover, since under changes in the metric ⌦(k) the

algorithm converges smoothly to a new stable state –that is, the DR projection
under the new metric–, changes can be tracked by the user, allowing to establish
links and find di↵erences between the new projection and the former one.
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, the user can explore several kinds of non-
linear correlations between the variables. Suppose that the user has chosen
a set of K nonzero weights {!

q1 ,!q2 , . . . ,!qK}. If a 1-dimensional structure
–i.e. a snake-shaped figure– emerges after convergence in the projection, it re-
veals a mutual nonlinear dependency on an independent parameter t of the type
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qK (t). Note that this information is
much more general than the one provided by a linear correlation coe�cient or
the more general nonlinear correlations observable in scatter plots, which can
only be visualized for two variables in a single scatter plot.
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Abstract. In this work, we present a novel approach for data visualiza-
tion based on interactive dimensionality reduction (iDR). The main idea of
the paper relies on considering for visualization the intermediate results of
non-convex DR algorithms under changes on the metric of the input data
space driven by the user. With an appropriate visualization interface, our
approach allows the user to focus on the relationships among dynamically
selected groups of variables, as well as to assess the impact of a single
variable or groups of variables in the structure of the data.

1 Introduction

Many problems today involve the analysis of large datasets, which also contain
a very large number of variables from which the user should be able to find
meaningful relationships to acquire knowledge. The mere fact of obeying laws,
rules or restrictions arising from the problem domain, leads to dependencies that
make the intrinsic dimensionality of the data to be much smaller. Dimensionality
reduction (DR) algorithms –see [1] for a review– are able to find low dimensional
latent structures hidden in high dimensional data and produce a mapping on a
low dimensional space that preserves the underlying structure of data. They
are extremely useful tools in the field of visual analytics, since they provide an
advanced way for spatialization of data, allowing to create visual representa-
tions where spatial proximity between two items y

i

and y

j

in the visualization
represents similarity between x

i

and x

j

in a high dimensional space.
Another key ingredient in visual analytics is interaction. Interaction tech-

niques –zoom, pan, brushing, etc.– allow the user to reconfigure the visualization
to focus on the interesting aspects of data or to discard information that is ir-
relevant to the available knowledge of the user. In this paper we present a novel
approach for data visualization that suggests a low level integration of user in-
teraction into the DR computation and visualization process, by means of the
so-called interactive dimensionality reduction (iDR). In section 2 we describe
the iDR approach as a user-driven visualization of intermediate results of DR
algorithms, highlighting some of its potential applications, such as the analysis
of time-varying datasets or sensitivity analysis of data dependencies. In section
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Application demo: fault analysis of AC motor

Application interface with iDR user-driven modification of the input metric space
Javascript application using processingjs (http://processingjs.org)
Analysis of three vibration signals ax(t) ay(t) az(t) and two phase currents iR(t), iS(t)
of a 4kW 2 pole-pair asynchronous motor http://isa.uniovi.es/~idiaz/demos/iDR-vibracionesMotor/
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Fig. 2. Schematic of the rig setup (top) and time plot of the accelerometer signal for
the 9 experiments (bottom). The details in the bottom figure show up the change in
time series dynamics

4 Results

The rotation speed of the 2 pole-pair induction machine with no mechanical
load is very close to 1500 rpm –25 Hz-. Frequencies associated to mechanical
asymmetries will typically be 1⇥, 2⇥, · · · , n⇥ multiples of 25 Hz. Vibration com-
ponents produced by electrical imbalance are multiples –specially 2⇥– of the 50
Hz line frequency. For each of the 9 experiments, 35 dimensional feature vectors
containing energies in bands 25±1 Hz, 50±1 Hz, · · ·, 875±1 Hz, were computed
for 8192-point windows with an overlapping of 5%, by summing up the squared
modules of the FFT harmonics falling inside each band. To represent the process
behavior, four manifold learning –LTSA, LLE, laplacian eigenmaps (L-Eig) and
ISOMAP– methods were applied, with the parameters described in Table 2.

The projections obtained using the four methods are shown in Fig. 3, using
a color scale to represent the values of two dynamic features, namely, the energy
in the 25± 1 Hz band –which is specially sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to electrical imbalance. The four columns represent
the four DR methods and the two rows represent the features.

The results show that the four DR methods yield similar conclusions. All
the methods show in separate regions the four main conditions, namely, Normal,
Ecc, Imb-20 and Ecc+Imb. All the projections also show, as expected, smooth
continuous transitions between the normal and severe electrical imbalance con-
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Abstract. This paper describes a procedure based on the use of man-
ifold learning algorithms to visualize periodic –or nearly periodic– time
series produced by processes with di�erent underlying dynamics. The
proposed approach is done in two steps: a feature extraction stage, where
a set of descriptors in the frequency domain is extracted, and a mani-
fold learning stage that finds low dimensional structures in the feature
space and obtains projections on a low dimensional space for visualiza-
tion. This approach is applied on vibration data of an electromechanical
rotating machine to visualize di�erent vibration conditions under two
kinds of asymmetries, using four state-of-the-art manifold learning algo-
rithms for comparison purposes. In all cases, the methods yield consistent
results and produce insightful visualizations, suggesting future develop-
ments and application in engineering problems.

Keywords: manifold learning, dimensionality reduction, vibration anal-
ysis

1 Introduction

Many problems in machine learning involve a –sometimes very– large number of
variables. Examples of such problems can be found in image classification, text
mining, socioeconomic data analysis or process condition monitoring, just to
mention a few. In most cases, relationships –or constraints– among the observed
variables arise from physical laws, spatial or geometrical restrictions, redundancy
between two or more variables, etc. that make the problem depend on a reduced
set of factors that explain the observed behavior. The computation of a minimal
set of variables that describe these factors makes it possible to develop e�cient
data visualization methods with a large explanatory power.

The problem of finding a reduced set of latent variables that explain a large
dimensional set is closely related to dimensionality reduction (DR). DR Tech-
niques have been used for a long time. Maybe one of the first and most ever used
?? This work has been financed by the spanish Ministry of Science and Education and
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Abstract. This paper describes a procedure based on the use of man-
ifold learning algorithms to visualize periodic –or nearly periodic– time
series produced by processes with di�erent underlying dynamics. The
proposed approach is done in two steps: a feature extraction stage, where
a set of descriptors in the frequency domain is extracted, and a mani-
fold learning stage that finds low dimensional structures in the feature
space and obtains projections on a low dimensional space for visualiza-
tion. This approach is applied on vibration data of an electromechanical
rotating machine to visualize di�erent vibration conditions under two
kinds of asymmetries, using four state-of-the-art manifold learning algo-
rithms for comparison purposes. In all cases, the methods yield consistent
results and produce insightful visualizations, suggesting future develop-
ments and application in engineering problems.

Keywords: manifold learning, dimensionality reduction, vibration anal-
ysis

1 Introduction

Many problems in machine learning involve a –sometimes very– large number of
variables. Examples of such problems can be found in image classification, text
mining, socioeconomic data analysis or process condition monitoring, just to
mention a few. In most cases, relationships –or constraints– among the observed
variables arise from physical laws, spatial or geometrical restrictions, redundancy
between two or more variables, etc. that make the problem depend on a reduced
set of factors that explain the observed behavior. The computation of a minimal
set of variables that describe these factors makes it possible to develop e�cient
data visualization methods with a large explanatory power.

The problem of finding a reduced set of latent variables that explain a large
dimensional set is closely related to dimensionality reduction (DR). DR Tech-
niques have been used for a long time. Maybe one of the first and most ever used
?? This work has been financed by the spanish Ministry of Science and Education and

FEDER funds under grants DPI2009-13398-C02-01/02

6

Table 1. Description of the 9 experiments.

Experiment No. Label Descripction

#1 Ecc Mechanical eccentricity
#2 ’Ecc+Imb’ Mechanical eccentricity + Electrical imbalance
#3 ’Normal’ No eccentricity, no electrical imbalance.
#4 ’Imb-10’ Electrical imbalance (fixed load, 10 �)
#5 ’Imb-15’ Electrical imbalance (fixed load, 15 �)
#6 ’Imb-20’ Electrical imbalance (fixed load, 20 �)
#7 ’Imb-5’ Electrical imbalance (fixed load, 5 �)
#8 ’Imb-var-1’ Electrical imbalance (variable load, low⇥high⇥low)
#9 ’Imb-var-2’ Electrical imbalance (variable load, low⇥high)

Table 2. Four DR methods and parameters.

Method Parameters description

LTSA K = 100 K = 100 neighbors –see [17].
LLE K = 100, ⇥ = 0.1 K = 100 neighbors and regularizing factor ⇥ = 0.1 –see [10].
L-Eig ⇤ = 0.5, � = 0.5 Distances ⇤xi � xj⇤ previously normalized to the range [0, 1], the heat

kernel parameter is ⇤ = 0.5 and �-neighborhood � = 0.5 –see [1].
ISOMAP K = 100 K = 100 neighbors –see [14].

Fig. 3. Projections using the four methods.

ditions –Imb-5, Imb-10, Imb-15, Imb-var-1, Imb-var-2–, showing up good
consistency with the nature of the fault.

Some minor di�erences can be observed among the four methods. The com-
bined mechanical and electrical asymmetry Ecc+Imb reveals a small 1D variation
of its states in the LTSA, L-Eig and ISOMAP methods, and is reflected as a
small cluster in LLE method. Also, the continuous transition between the dif-
ferent degrees of electrical imbalances is better described in the LTSA, LLE and
ISOMAP, while the L-Eig method seems to show a dependency on two factors.
A more complete representation of the process dynamics can be obtained includ-
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C. Simultaneous Vibrations Sources

In an actual system, the complex electromechanical interac-
tions involved, usually produce different condition scenarios
from those studied previously when the fault causes are
analyzed separately. In these new situations, the identification
of root causes of failure is sometimes elusive due to the
complexity in uncoupling the mechanical failure causes and
their direct electrical effects [14].

The objective when exploring the current spectrum under
these circumstances, is to obtain useful information about
reliable current-vibration relationships through the different
working conditions in order to be capable of identifying these
different states by means of sensorless diagnosis.

III. EXPERIMENTAL SETUP

The test rig consists of one AC asynchronous machine of
4kW and two pole pairs, two accelerometers with a bandwidth
of 13 KHz and a 100 mV/g output, three Hall effect current
transducers, one RTD Pt-100 temperature sensor, a multichan-
nel low-pass filtering box and a powerful data acquisition,
processing and visualization software application which was
developed for process condition monitoring and has two main
modules: one for data acquisition and another one for feature
extraction [15].

Both accelerometers are mounted on the motor housing,
as shown in Fig. 1, to acquire the global motor vibration
levels. The analyzed faults are unbalances produced in two
ways: external vibrations –in this case the external source of
vibration is a mechanical asymmetry located as an eccentric
mass at the motor fan which rotates at a frequency fv

ext

of
30Hz– and mechanical imbalance –an oscillating torque is
caused by a revolving mass bolted to a disc and obviously
rotating at the motor frequency n of 25 Hz. Both the vibration
and current signals are low-pass filtered at 300Hz through
a 4th order Butterworth type filter in order to limit aliasing
distortion. The data acquisition module performs the task re-
lated to acquisition, storage and displaying of data as temporal
signals and its corresponding spectra obtained by means of
Fast Fourier Transform. The sampling frequency is 1000Hz.

Tests were carried out under 8 different vibration conditions
(two tests were done for each condition) combining two types
of vibration sources: mechanical imbalance (MI) by changing
the weight of the asymmetric mass (0, 2, 8 and 12 mass units),
and external vibration (EV, with and without). The labels for
each condition are summarized in Table I.

Label MI (in mass units) EV
0s 0 without
0c 0 with
2s 2 without
2c 2 with
8s 8 without
8c 8 with

12s 12 without
12c 12 with

TABLE I
LABELS FOR THE 8 VIBRATION CONDITIONS TESTED ON THE MOTOR.
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Fig. 2. Typical feature extraction process to compose the data matrix D.

IV. CORRELATION MINING TECHNIQUES

In this section we describe a set of techniques –some of
them widely used in data mining applications and others new
in the field– for correlation mining and its application to the
problem exposed in section II.

A. Feature extraction
Let’s suppose we have measured a variable d(t) at regular

time intervals with a sample period T

{ d(T ), d(2T ), · · · , d(kT ), · · · }

and computed the FFT harmonics at frequencies f1, f2, · · · , fn

at overlapped windows to obtain, for the kth window, the
feature vector

dk =
⇤
Df1

k ,Df2
k , · · · Df

n

k

⌅T
.

Joining the feature vectors, we can build a data matrix

D = (dij) = [d1,d2, · · · ,dN ]

where dij ⇥ Df
i

j represents the energy at frequency fi

evaluated at window j. This feature extraction process is
sketched in Fig. 2

In order to analyze the joint behavior of currents and
vibrations, it is possible to define an augmented data matrix
as

X =
�

I
A

⇥

where I and A are data matrices containing the current and
vibration harmonics respectively.

In order to find correlations between currents and vibrations,
a matrix of feature vectors was built containing the energies at
frequencies 5, 10, · · · , 200 Hz for current in one phase iR(t)
as well as for horizontal and vertical accelerations ah(t) and
av(t) using 8192�point windows with an overlapping of 50%.
All this gives a feature vector containing 40 current harmonics
and 80 acceleration harmonics.

xk = [i5R, i10R , · · · , i200R⌥ ⌃⇧ �
currents

, a5
h, · · · a200

h , a5
v, · · · , a200

v⌥ ⌃⇧ �
vibrations

]T

{f1, B1}

{f2, B2}

{fn, Bn}

Dimensionality
Reduction visualization

k-th signal buffer

Computation
of band 
energies

feature
vector
dk

d1k

d2k

dnk
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ing a larger set of features, resulting in spectrum representations. Since every
projected point is associated to a vector of energies at frequency bands, glyphs
at every projected position can be generated from energies of a whole frequency
range, resulting in a visualization like figure 4, that was obtained for projec-
tions of the LTSA method showing harmonics from 25 Hz to 200 Hz, in steps
of 25 Hz. Such representation gives a comprehensive view of the global behavior
of the signal frequency content. Also, it can be seen how the spectrum shape
changes continuously from the di�erent conditions, revealing the 1D nature of
the vibration conditions induced in the experiments.

Fig. 4. Map of projected spectra using LTSA. Note that the projections are spatially
distributed so that harmonics smoothly change across the vibration conditions.

5 Conclusions

In this paper we have proposed a procedure to explore the dynamic behavior of a
process composed of a feature extraction stage based on the frequency domain,
and a DR mapping using manifold learning algorithms for visualization. For
many kinds of engineering systems, the method is based on the assumption that
variations on their operating condition originated by a low number of factors
influence in nearly the same way all frequencies of the signal spectrum, lead-
ing to highly structured data in a properly chosen feature space. The proposed
method is applied to vibration analysis of a faulty induction motor. The results
show that vibration data produced under two di�erent kinds of faults (electrical
and mechanical asymmetries) produce low dimensional structures in the feature

Projections are spatially distributed
so that harmonics smoothly change 
across the vibration conditions.

Map of projected spectra (LTSA)
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Abstract. This paper describes a procedure based on the use of manifold learning algorithms
to visualize periodic –or nearly periodic– time series produced by processes with di�erent under-
lying dynamics. The proposed approach is done in two steps: a feature extraction stage, where a
set of descriptors in the frequency domain is extracted, and a manifold learning stage that finds
low dimensional structures in the feature space and obtains projections on a low dimensional
space for visualization. This approach is applied on vibration data of an electromechanical
rotating machine to visualize di�erent vibration conditions under two kinds of asymmetries,
using four state-of-the-art manifold learning algorithms for comparison purposes. In all cases,
the methods yield consistent results and produce insightful visualizations, suggesting future
developments and application in engineering problems.
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The test rig consists of one AC asyn-
chronous machine of 4kW and two pole
pairs, two accelerometers –only the hor-
izontal was used in this paper– with a
bandwidth of 13 KHz and a 100 mV/g
sensitivity, a multichannel low-pass fil-
tering box and a data acquisition card.
The accelerometer signal was previously
filtered using a 4th order Butterworth
filter to limit aliasing distortion and
later acquired with a 5000 Hz sample
rate.
The analyzed faults were induced by
two kinds of asymmetries: external vi-
brations produced by a mechanical ec-
centricity – a revolving mass bolted to
a disc causing an oscillating torque at
the rotating speed, near 25 Hz– and an
electrical imbalance caused by a vari-
able electrical load –a resistor– in one
of the phases. A total of nine exper-
iments were done, running the motor
under both kinds of faults and combi-
nations of these.
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1 Feature Extraction

A windowed DFT transform is used to
avoid Gibbs e�ect

Yi =
N�1X

k=0

w(k)yke�j2�ik/N

i = 0, · · · , N � 1

where w(k) is a windowing function –
Hanning in this paper.
For the nth window yn, the energies in
bands around p specified center frequen-
cies f1, f2, · · · , fp with predefined band-
widths B1, B2, · · · , Bp can be computed
by summing up the squares of the har-
monics inside the bands, to obtain a p-
dimensional feature vector

dn = [d1n, d2n, · · · dpn]T

din =
vuut

X

k
NT 2[fi�

Bi
2 ,fi+

Bi
2 ]

⇥Yk⇥2

Feature vectors can be arranged into a
data matrix D = (din) = [d1,d2, · · ·],
where din represents the energy in the
band {fi, Bi} –that is, with center fre-
quency fi and width Bi–, for window
n.
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Conclusions.

Procedure to explore the dynamic be-
havior of a process composed of a fea-
ture extraction stage based on the fre-
quency domain, and a DR mapping us-
ing manifold learning algorithms for vi-
sualization.

The method is based on the assumption
that variations on their operating condi-
tion originated by a low number of fac-
tors influence in nearly the same way
all frequencies of the signal spectrum,
leading to highly structured data in a
properly chosen feature space.

Results show that vibration data pro-
duced under two di�erent kinds of faults
(electrical and mechanical asymmetries)
produce low dimensional structures in
the feature space that can be e⇥ciently
unfolded with state-of-the-art DR meth-
ods.

The resulting projections can be e⇥-
ciently represented using visualization
methods that provide an insightful view
of the changing dynamics, suggesting
the potential use of the proposed ap-
proach in many problems in which vi-
sualization of dynamics is required such
as fault detection or industrial process
data mining.

The method can be adapted for on-
line monitoring using nonlinear interpo-
lation between the input and projected
points to project new data.
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A more complete representation of the
process dynamics can be obtained in-
cluding a larger set of features, result-
ing in spectrum representations. Since
every projected point is associated to a
vector of energies at frequency bands,
glyphs at every projected position can
be generated from energies of a whole
frequency range, resulting in the visual-
ization shown in the left figure, that was
obtained for projections of the LTSA
method showing harmonics from 25 Hz
to 200 Hz, in steps of 25 Hz.
Such representation gives a comprehen-
sive view of the global behavior of the
signal frequency content. Also, it can be
seen how the spectrum shape changes
continuously from the di�erent condi-
tions, revealing the 1D nature of the vi-
bration conditions induced in the exper-
iments.
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In many electromechanical systems, the
feature vector described above is invari-
ant for a given process condition. We
assume that the process condition de-
pends on a few factors. So, a rela-
tionship between the high dimensional
feature space and the low dimensional
space of factors that define the actual
process condition can be established.

Under this hypothesis, the problem is to
find latent low dimensional structures in
the feature space as, precisely, DR tech-
niques are aimed. Thus, DR techniques
can be applied to unfold the data on the
feature space. This yields a distribution
of the projections using a spatial distri-
bution that reflects the factors on which
the process conditions depend.

Combined with scatter plots using col-
ors and/or glyphs to represent features
or variables with a physical sense, this
provide insightful information on the
behavior of the process. In this work
four state-of-the-art methods, namely,
LTSA, LLE, L-Eig, and ISOMAP are
tested, showing that all produce insight-
ful results and lead to conceptually sim-
ilar conclusions.
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Color scale represents the values of two
dynamic features, namely, the energy in
the 25 ± 1 Hz band –which is specially
sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to elec-
trical imbalance. The four columns rep-
resent the four DR methods and the two
rows represent the features.
The results show that the four DR
methods yield similar conclusions. All
the methods show in separate regions
the four main conditions, namely,
Normal, Ecc, Imb-20 and Ecc+Imb. All
the projections also show, as expected,
smooth continuous transitions between
the normal and severe electrical im-
balance conditions –Imb-5, Imb-10,

Imb-15, Imb-var-1, Imb-var-2–,
showing up good consistency with the
nature of the fault.
Some minor di�erences can be observed
among the four methods. The com-
bined mechanical and electrical asym-
metry Ecc+Imb reveals a small 1D vari-
ation of its states in the LTSA, L-Eig
and ISOMAP methods, and is reflected
as a small cluster in LLE method.
Also, the continuous transition between
the di�erent degrees of electrical imbal-
ances is better described in the LTSA,
LLE and ISOMAP, while the L-Eig
method seems to show a dependency on
two factors.
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Table 1. Description of the 9 experiments.

Experiment No. Label Descripction

#1 Ecc Mechanical eccentricity
#2 ’Ecc+Imb’ Mechanical eccentricity + Electrical imbalance
#3 ’Normal’ No eccentricity, no electrical imbalance.
#4 ’Imb-10’ Electrical imbalance (fixed load, 10 �)
#5 ’Imb-15’ Electrical imbalance (fixed load, 15 �)
#6 ’Imb-20’ Electrical imbalance (fixed load, 20 �)
#7 ’Imb-5’ Electrical imbalance (fixed load, 5 �)
#8 ’Imb-var-1’ Electrical imbalance (variable load, low⇥high⇥low)
#9 ’Imb-var-2’ Electrical imbalance (variable load, low⇥high)

Table 2. Four DR methods and parameters.

Method Parameters description

LTSA K = 100 K = 100 neighbors –see [17].
LLE K = 100, ⇥ = 0.1 K = 100 neighbors and regularizing factor ⇥ = 0.1 –see [10].
L-Eig ⇤ = 0.5, � = 0.5 Distances ⇤xi � xj⇤ previously normalized to the range [0, 1], the heat

kernel parameter is ⇤ = 0.5 and �-neighborhood � = 0.5 –see [1].
ISOMAP K = 100 K = 100 neighbors –see [14].

Fig. 3. Projections using the four methods.

ditions –Imb-5, Imb-10, Imb-15, Imb-var-1, Imb-var-2–, showing up good
consistency with the nature of the fault.

Some minor di�erences can be observed among the four methods. The com-
bined mechanical and electrical asymmetry Ecc+Imb reveals a small 1D variation
of its states in the LTSA, L-Eig and ISOMAP methods, and is reflected as a
small cluster in LLE method. Also, the continuous transition between the dif-
ferent degrees of electrical imbalances is better described in the LTSA, LLE and
ISOMAP, while the L-Eig method seems to show a dependency on two factors.
A more complete representation of the process dynamics can be obtained includ-
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Fig. 2. Schematic of the rig setup (top) and time plot of the accelerometer signal for
the 9 experiments (bottom). The details in the bottom figure show up the change in
time series dynamics

4 Results

The rotation speed of the 2 pole-pair induction machine with no mechanical
load is very close to 1500 rpm –25 Hz-. Frequencies associated to mechanical
asymmetries will typically be 1�, 2�, · · · , n� multiples of 25 Hz. Vibration com-
ponents produced by electrical imbalance are multiples –specially 2�– of the 50
Hz line frequency. For each of the 9 experiments, 35 dimensional feature vectors
containing energies in bands 25±1 Hz, 50±1 Hz, · · ·, 875±1 Hz, were computed
for 8192-point windows with an overlapping of 5%, by summing up the squared
modules of the FFT harmonics falling inside each band. To represent the process
behavior, four manifold learning –LTSA, LLE, laplacian eigenmaps (L-Eig) and
ISOMAP– methods were applied, with the parameters described in Table 2.

The projections obtained using the four methods are shown in Fig. 3, using
a color scale to represent the values of two dynamic features, namely, the energy
in the 25± 1 Hz band –which is specially sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to electrical imbalance. The four columns represent
the four DR methods and the two rows represent the features.

The results show that the four DR methods yield similar conclusions. All
the methods show in separate regions the four main conditions, namely, Normal,
Ecc, Imb-20 and Ecc+Imb. All the projections also show, as expected, smooth
continuous transitions between the normal and severe electrical imbalance con-
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The test rig consists of one AC asyn-
chronous machine of 4kW and two pole
pairs, two accelerometers –only the hor-
izontal was used in this paper– with a
bandwidth of 13 KHz and a 100 mV/g
sensitivity, a multichannel low-pass fil-
tering box and a data acquisition card.
The accelerometer signal was previously
filtered using a 4th order Butterworth
filter to limit aliasing distortion and
later acquired with a 5000 Hz sample
rate.
The analyzed faults were induced by
two kinds of asymmetries: external vi-
brations produced by a mechanical ec-
centricity – a revolving mass bolted to
a disc causing an oscillating torque at
the rotating speed, near 25 Hz– and an
electrical imbalance caused by a vari-
able electrical load –a resistor– in one
of the phases. A total of nine exper-
iments were done, running the motor
under both kinds of faults and combi-
nations of these.
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A windowed DFT transform is used to
avoid Gibbs e�ect
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where w(k) is a windowing function –
Hanning in this paper.
For the nth window yn, the energies in
bands around p specified center frequen-
cies f1, f2, · · · , fp with predefined band-
widths B1, B2, · · · , Bp can be computed
by summing up the squares of the har-
monics inside the bands, to obtain a p-
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where din represents the energy in the
band {fi, Bi} –that is, with center fre-
quency fi and width Bi–, for window
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C. Simultaneous Vibrations Sources

In an actual system, the complex electromechanical interac-
tions involved, usually produce different condition scenarios
from those studied previously when the fault causes are
analyzed separately. In these new situations, the identification
of root causes of failure is sometimes elusive due to the
complexity in uncoupling the mechanical failure causes and
their direct electrical effects [14].

The objective when exploring the current spectrum under
these circumstances, is to obtain useful information about
reliable current-vibration relationships through the different
working conditions in order to be capable of identifying these
different states by means of sensorless diagnosis.

III. EXPERIMENTAL SETUP

The test rig consists of one AC asynchronous machine of
4kW and two pole pairs, two accelerometers with a bandwidth
of 13 KHz and a 100 mV/g output, three Hall effect current
transducers, one RTD Pt-100 temperature sensor, a multichan-
nel low-pass filtering box and a powerful data acquisition,
processing and visualization software application which was
developed for process condition monitoring and has two main
modules: one for data acquisition and another one for feature
extraction [15].

Both accelerometers are mounted on the motor housing,
as shown in Fig. 1, to acquire the global motor vibration
levels. The analyzed faults are unbalances produced in two
ways: external vibrations –in this case the external source of
vibration is a mechanical asymmetry located as an eccentric
mass at the motor fan which rotates at a frequency fv

ext

of
30Hz– and mechanical imbalance –an oscillating torque is
caused by a revolving mass bolted to a disc and obviously
rotating at the motor frequency n of 25 Hz. Both the vibration
and current signals are low-pass filtered at 300Hz through
a 4th order Butterworth type filter in order to limit aliasing
distortion. The data acquisition module performs the task re-
lated to acquisition, storage and displaying of data as temporal
signals and its corresponding spectra obtained by means of
Fast Fourier Transform. The sampling frequency is 1000Hz.

Tests were carried out under 8 different vibration conditions
(two tests were done for each condition) combining two types
of vibration sources: mechanical imbalance (MI) by changing
the weight of the asymmetric mass (0, 2, 8 and 12 mass units),
and external vibration (EV, with and without). The labels for
each condition are summarized in Table I.

Label MI (in mass units) EV
0s 0 without
0c 0 with
2s 2 without
2c 2 with
8s 8 without
8c 8 with

12s 12 without
12c 12 with

TABLE I
LABELS FOR THE 8 VIBRATION CONDITIONS TESTED ON THE MOTOR.

? ? ? ?
d1

D =

d2 dN�1 dN

fft
select. of harm.

&

select. of harm.

samples

variables
(harmonics)

&

select. of harm.
&

select. of harm.
&

fftfft
fft

{d(T ), d(2T ), · · · , d(nT )}
time sequence

n�element window

n�element window

n�element window

n�element window

�
�

�

? ? ? ?············

············

············

············

Fig. 2. Typical feature extraction process to compose the data matrix D.

IV. CORRELATION MINING TECHNIQUES

In this section we describe a set of techniques –some of
them widely used in data mining applications and others new
in the field– for correlation mining and its application to the
problem exposed in section II.

A. Feature extraction
Let’s suppose we have measured a variable d(t) at regular

time intervals with a sample period T

{ d(T ), d(2T ), · · · , d(kT ), · · · }

and computed the FFT harmonics at frequencies f1, f2, · · · , fn

at overlapped windows to obtain, for the kth window, the
feature vector

dk =
⇤
Df1

k ,Df2
k , · · · Df

n

k

⌅T
.

Joining the feature vectors, we can build a data matrix

D = (dij) = [d1,d2, · · · ,dN ]

where dij ⇥ Df
i

j represents the energy at frequency fi

evaluated at window j. This feature extraction process is
sketched in Fig. 2

In order to analyze the joint behavior of currents and
vibrations, it is possible to define an augmented data matrix
as

X =
�

I
A

⇥

where I and A are data matrices containing the current and
vibration harmonics respectively.

In order to find correlations between currents and vibrations,
a matrix of feature vectors was built containing the energies at
frequencies 5, 10, · · · , 200 Hz for current in one phase iR(t)
as well as for horizontal and vertical accelerations ah(t) and
av(t) using 8192�point windows with an overlapping of 50%.
All this gives a feature vector containing 40 current harmonics
and 80 acceleration harmonics.

xk = [i5R, i10R , · · · , i200R⌥ ⌃⇧ �
currents

, a5
h, · · · a200

h , a5
v, · · · , a200

v⌥ ⌃⇧ �
vibrations

]T

1 Feature Extraction

A windowed DFT transform is used to
avoid Gibbs e�ect

Yi =
N�1X

k=0

w(k)yke�j2�ik/N

i = 0, · · · , N � 1

where w(k) is a windowing function –
Hanning in this paper.
For the nth window yn, the energies in
bands around p specified center frequen-
cies f1, f2, · · · , fp with predefined band-
widths B1, B2, · · · , Bp can be computed
by summing up the squares of the har-
monics inside the bands, to obtain a p-
dimensional feature vector

dn = [d1n, d2n, · · · dpn]T

din =
vuut

X

k
NT 2[fi�

Bi
2 ,fi+

Bi
2 ]

⇥Yk⇥2

Feature vectors can be arranged into a
data matrix D = (din) = [d1,d2, · · ·],
where din represents the energy in the
band {fi, Bi} –that is, with center fre-
quency fi and width Bi–, for window
n.

3

In many electromechanical systems, the
feature vector described above is invari-
ant for a given process condition. We
assume that the process condition de-
pends on a few factors. So, a rela-
tionship between the high dimensional
feature space and the low dimensional
space of factors that define the actual
process condition can be established.

Under this hypothesis, the problem is to
find latent low dimensional structures in
the feature space as, precisely, DR tech-
niques are aimed. Thus, DR techniques
can be applied to unfold the data on the
feature space. This yields a distribution
of the projections using a spatial distri-
bution that reflects the factors on which
the process conditions depend.

Combined with scatter plots using col-
ors and/or glyphs to represent features
or variables with a physical sense, this
provide insightful information on the
behavior of the process.

In this work four state-of-the-art meth-
ods, namely, LTSA, LLE, L-Eig, and
ISOMAP are tested, showing that all
produce insightful results and lead to
conceptually similar conclusions.
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Sensitivity analysis
Whenever the user increases a single weight “wq” the input 
distance pattern dij becomes more sensitive to variable q. Points 
(samples) showing significantly large deviations in variable q, will 
move apart upon changes in wq, thus revealing their dependency 
on variable q.

wq wq

3 we describe an application demo of the iDR idea for the visual analysis of fault
states in a rotating machine. Finally, section 4 concludes the paper.

2 The interactive Dimensionality Reduction approach

In the typical procedure to use DR algorithms for visual analytics, interaction
is often done after DR computation on the input dataset. The user sets up an
initial configuration for the DR algorithm, runs it until convergence and, after N
iterations, the output results are used to produce a visualization. The user may
later use interaction techniques to reconfigure this visualization or even decide to
run the DR algorithm again using another parameterization, starting the cycle
again –see for instance [2]. This approach can be thought of as a batch mode

interaction scheme for DR visual analytics.

DR algorithm

iteration

DR Code Output Visualization

Interaction

Interaction

DR algorithm

iteration

DR Code Output Visualization

Interaction

Interaction

Fig. 1: Batch mode interaction scheme (left) vs. the iDR approach (right)

However, interaction can go far beyond this approach, allowing the user to
take full control of the DR behavior by means of iterative reconfiguration of

computational algorithms [3]. The right picture in Fig. 1, shows the main idea
of this approach for DR analysis, where the intermediate results are used to
produce a visualization at each iteration. The result is a dynamically changing
visualization that allows the user to track changes in the resulting projection
under changes in the problem formulation, such as, for instance, user-driven
changes of the metric in the input space (e.g. by modifying the weights of the
input variables), or under time-varying input data (e.g. in dynamic processes
where the elements of the input dataset change with time). Despite this approach
is still rather unexplored, a few related works can be found, as an interactive
version of PCA [4] and an interactive learning of distance functions [5].

2.1 Applications of the iDR approach

To allow interaction, we shall consider iterative algorithms, such as Stochastic
Neighbor Embedding (SNE) [6] or the Neigborhood Retrieval Visualizer (NeRV)
[7]. For simplicity, let’s consider a block diagram of the SNE algorithm for the
k-th iteration –see Fig. 2. Some of the inputs –data or parameters– to the
algorithm can change or be changed by the user at each iteration.

batch mode interaction scheme iDR interaction scheme

set initial configuration
run until convergence (N steps)

visualize the results
fine-tune the DR algorithm

run 1step 
visualize the results

set initial configuration

fine-tune
the DR algorithm

quick!
~10-1s

slow!
~101s

enables a quick feedback to the user
and hence a much better user integration
in the exploration process

3.   Interactive incorporation of class knowledge

original space class space

algorithm converges smoothly to a new stable state –that is, the DR projection
under the new metric–, changes can be tracked by the user, allowing to establish
links and find di↵erences between the new projection and the former one.

Interacting with the weights !

q

, the user can explore several kinds of non-
linear correlations between the variables. Suppose that the user has chosen
a set of K nonzero weights {!

q1 ,!q2 , . . . ,!qK}. If a 1-dimensional structure
–i.e. a snake-shaped figure– emerges after convergence in the projection, it re-
veals a mutual nonlinear dependency on an independent parameter t of the type
x

q1 = f

q1(t), xq2 = f

q2(t), . . . , xqK = f

qK (t). Note that this information is
much more general than the one provided by a linear correlation coe�cient or
the more general nonlinear correlations observable in scatter plots, which can
only be visualized for two variables in a single scatter plot.

A further collateral benefit of this kind of DR interaction is sensitivity anal-

ysis. Whenever the user modifies a single weight !
q

, the input distance pattern
d

ij

becomes more sensitive to variable q. This will be reflected as large dis-
placements in the projections of all elements that have significant di↵erences
in variable q with respect to the other ones. This sensitivity analysis is not
restricted to a single variable. Eventually, if the interface allows it, the user
could change the weights {!

q1 ,!q2 , . . . ,!qM } of a group of M variables at the
same time to discover elements that di↵er significantly in any of the variables
x

q1 , xq2 , . . . , xqM . Moreover, the displacement trajectories should be di↵erent for
elements with di↵erent patterns of variation within the group.

2.1.3 Interactive feature space transformations

Feature space transformations [8] allow improving the quality of an existing
embedding in terms of both structural preservation and class separation. One
simple feature extension scheme, for instance, is to augment each element x with
an extended feature set x̄

c(x) equal to the centroid of the class c(x) it belongs
to, thus forming an extended vector x

e

= [x, x̄
c(x)]. The DR projection of x

e

,
therefore contains class information, resulting in a more meaningful projection.
A user-driven variant of this approach, suitable for interaction, could involve a
weight factor �

x

e

(�) = [(1� �)x, �x̄
c(x)]

letting the user modify �

(k) and projecting x

e

(�(k)) at iteration level, the user
can control the balance between class separation and structural preservation. As
a result the user can set the optimum point or even move it to gain insight and
find connections between data structure and class knowledge.

3 Application demo: fault analysis of AC motor

A javascript application using the iDR approach was developed using process-

ing.js (http://processingjs.org), for the analysis of vibration data in a 4kW,
2 pole-pair asynchronous motor, where three vibration signals –measured in the
three axes a

x

(t), a
y

(t), a
z

(t)– and two phase currents i
R

(t), i
S

(t) were recorded

the lambda factor allows to balance between pure 
class info (a set of a few centroids) and the original 
data

c(x)

Extended data point
using class info

original data point in the input space

λ

xc(x) the centroid for class c(x)

class to which the point x belongs

x
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Fig. 2: Block diagram of the SNE algorithm at the k-th iteration

2.1.1 Time-varying input datasets

Let the input dataset be {x
i

}, where x
i

is a vector with n features x
i1, xi2, . . . , xin

.
The Q elements of the input dataset may change over time, resulting in a time-
varying dataset {x

i

}(k) at time k. Using the DR algorithm to visualize time-
varying datasets allows the user to understand not only the main relationships
and structure of data but also how these relationships evolve along time.

2.1.2 Changes in the metric of the input space

A simple but powerful interaction feature can stem from user-driven change in
the input space metric ⌦. Let’s consider the following weighted norm in the
input data space

kxk2
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x

r
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rs
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. (1)

Using the metric induced by the previously defined weighted norm, the input dis-
tances between input points x

i

and x

j

would be d
ij

= kx
i

�x

j

k
⌦

. Let’s consider
the special case where the weight matrix ⌦ is diagonal ⌦ = diag(!1,!2, . . . ,!n

),
where we have dropped the repeated index in !

qq

and used !

q

instead, to sim-
plify notation. With this choice and an appropriate visual interface, the user
can vary the contribution of any variable to the DR projection by changing the
values of the weights !

q

. Any variable q for which !

q

= 0 would not contribute
to the DR projection (resulting in a pseudonorm). If a new weight matrix ⌦

(k)

is used by the DR algorithm at every iteration k, the DR algorithm will result
in a smooth transition (depending on the learning rate) to a new projection that
considers the relationships outlined by the new weight matrix. This mechanism
allows the user to quickly explore dependencies among the variables by selecting
subgroups in the interface. Moreover, since under changes in the metric ⌦(k) the

iDR approach using the SNE algorithm
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algorithm converges smoothly to a new stable state –that is, the DR projection
under the new metric–, changes can be tracked by the user, allowing to establish
links and find di↵erences between the new projection and the former one.

Interacting with the weights !

q

, the user can explore several kinds of non-
linear correlations between the variables. Suppose that the user has chosen
a set of K nonzero weights {!

q1 ,!q2 , . . . ,!qK}. If a 1-dimensional structure
–i.e. a snake-shaped figure– emerges after convergence in the projection, it re-
veals a mutual nonlinear dependency on an independent parameter t of the type
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q1 = f

q1(t), xq2 = f

q2(t), . . . , xqK = f

qK (t). Note that this information is
much more general than the one provided by a linear correlation coe�cient or
the more general nonlinear correlations observable in scatter plots, which can
only be visualized for two variables in a single scatter plot.

A further collateral benefit of this kind of DR interaction is sensitivity anal-

ysis. Whenever the user modifies a single weight !
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, the input distance pattern
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becomes more sensitive to variable q. This will be reflected as large dis-
placements in the projections of all elements that have significant di↵erences
in variable q with respect to the other ones. This sensitivity analysis is not
restricted to a single variable. Eventually, if the interface allows it, the user
could change the weights {!

q1 ,!q2 , . . . ,!qM } of a group of M variables at the
same time to discover elements that di↵er significantly in any of the variables
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q1 , xq2 , . . . , xqM . Moreover, the displacement trajectories should be di↵erent for
elements with di↵erent patterns of variation within the group.

2.1.3 Interactive feature space transformations

Feature space transformations [8] allow improving the quality of an existing
embedding in terms of both structural preservation and class separation. One
simple feature extension scheme, for instance, is to augment each element x with
an extended feature set x̄

c(x) equal to the centroid of the class c(x) it belongs
to, thus forming an extended vector x
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c(x)]. The DR projection of x
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therefore contains class information, resulting in a more meaningful projection.
A user-driven variant of this approach, suitable for interaction, could involve a
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can control the balance between class separation and structural preservation. As
a result the user can set the optimum point or even move it to gain insight and
find connections between data structure and class knowledge.

3 Application demo: fault analysis of AC motor

A javascript application using the iDR approach was developed using process-

ing.js (http://processingjs.org), for the analysis of vibration data in a 4kW,
2 pole-pair asynchronous motor, where three vibration signals –measured in the
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In the case of parametric dependency of this type

subspace of variables 1,5,6
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the resulting visualization
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sample user-driven weight variation

User-driven modification of the distance metrics allows for detection of 
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Abstract. In this work, we present a novel approach for data visualization based on interactive dimensionality 
reduction (iDR). The main idea of the paper relies on considering for visualization the intermediate results of non-
convex DR algorithms under changes on the metric of the input data space driven by the user. With an appropriate 
visualization interface, our approach allows the user to focus on the relationships among dynamically selected groups of 
variables, as well as to assess the impact of a single variable or groups of variables in the structure of the data.
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Francisco J. Garćıa1 and Michel Verleysen2 ⇤

1- Electrical Engineering Dept. University of Oviedo
Edif. Dept. 2, campus de Viesques s/n 33204, Gijón, SPAIN
2- Univ. Catholique de Louvain - Machine Learning Group

ICTEAM/ELEN - Place du Levant, 3 1348 Louvain-la-Neuve, Belgium

Abstract. In this work, we present a novel approach for data visualiza-
tion based on interactive dimensionality reduction (iDR). The main idea of
the paper relies on considering for visualization the intermediate results of
non-convex DR algorithms under changes on the metric of the input data
space driven by the user. With an appropriate visualization interface, our
approach allows the user to focus on the relationships among dynamically
selected groups of variables, as well as to assess the impact of a single
variable or groups of variables in the structure of the data.

1 Introduction

Many problems today involve the analysis of large datasets, which also contain
a very large number of variables from which the user should be able to find
meaningful relationships to acquire knowledge. The mere fact of obeying laws,
rules or restrictions arising from the problem domain, leads to dependencies that
make the intrinsic dimensionality of the data to be much smaller. Dimensionality
reduction (DR) algorithms –see [1] for a review– are able to find low dimensional
latent structures hidden in high dimensional data and produce a mapping on a
low dimensional space that preserves the underlying structure of data. They
are extremely useful tools in the field of visual analytics, since they provide an
advanced way for spatialization of data, allowing to create visual representa-
tions where spatial proximity between two items y

i

and y

j

in the visualization
represents similarity between x

i

and x

j

in a high dimensional space.
Another key ingredient in visual analytics is interaction. Interaction tech-

niques –zoom, pan, brushing, etc.– allow the user to reconfigure the visualization
to focus on the interesting aspects of data or to discard information that is ir-
relevant to the available knowledge of the user. In this paper we present a novel
approach for data visualization that suggests a low level integration of user in-
teraction into the DR computation and visualization process, by means of the
so-called interactive dimensionality reduction (iDR). In section 2 we describe
the iDR approach as a user-driven visualization of intermediate results of DR
algorithms, highlighting some of its potential applications, such as the analysis
of time-varying datasets or sensitivity analysis of data dependencies. In section
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Application demo: fault analysis of AC motor

Application interface with iDR user-driven modification of the input metric space
Javascript application using processingjs (http://processingjs.org)
Analysis of three vibration signals ax(t) ay(t) az(t) and two phase currents iR(t), iS(t)
of a 4kW 2 pole-pair asynchronous motor http://isa.uniovi.es/~idiaz/demos/iDR-vibracionesMotor/
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Fig. 2. Schematic of the rig setup (top) and time plot of the accelerometer signal for
the 9 experiments (bottom). The details in the bottom figure show up the change in
time series dynamics

4 Results

The rotation speed of the 2 pole-pair induction machine with no mechanical
load is very close to 1500 rpm –25 Hz-. Frequencies associated to mechanical
asymmetries will typically be 1⇥, 2⇥, · · · , n⇥ multiples of 25 Hz. Vibration com-
ponents produced by electrical imbalance are multiples –specially 2⇥– of the 50
Hz line frequency. For each of the 9 experiments, 35 dimensional feature vectors
containing energies in bands 25±1 Hz, 50±1 Hz, · · ·, 875±1 Hz, were computed
for 8192-point windows with an overlapping of 5%, by summing up the squared
modules of the FFT harmonics falling inside each band. To represent the process
behavior, four manifold learning –LTSA, LLE, laplacian eigenmaps (L-Eig) and
ISOMAP– methods were applied, with the parameters described in Table 2.

The projections obtained using the four methods are shown in Fig. 3, using
a color scale to represent the values of two dynamic features, namely, the energy
in the 25± 1 Hz band –which is specially sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to electrical imbalance. The four columns represent
the four DR methods and the two rows represent the features.

The results show that the four DR methods yield similar conclusions. All
the methods show in separate regions the four main conditions, namely, Normal,
Ecc, Imb-20 and Ecc+Imb. All the projections also show, as expected, smooth
continuous transitions between the normal and severe electrical imbalance con-
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Abstract. This paper describes a procedure based on the use of man-
ifold learning algorithms to visualize periodic –or nearly periodic– time
series produced by processes with di�erent underlying dynamics. The
proposed approach is done in two steps: a feature extraction stage, where
a set of descriptors in the frequency domain is extracted, and a mani-
fold learning stage that finds low dimensional structures in the feature
space and obtains projections on a low dimensional space for visualiza-
tion. This approach is applied on vibration data of an electromechanical
rotating machine to visualize di�erent vibration conditions under two
kinds of asymmetries, using four state-of-the-art manifold learning algo-
rithms for comparison purposes. In all cases, the methods yield consistent
results and produce insightful visualizations, suggesting future develop-
ments and application in engineering problems.

Keywords: manifold learning, dimensionality reduction, vibration anal-
ysis

1 Introduction

Many problems in machine learning involve a –sometimes very– large number of
variables. Examples of such problems can be found in image classification, text
mining, socioeconomic data analysis or process condition monitoring, just to
mention a few. In most cases, relationships –or constraints– among the observed
variables arise from physical laws, spatial or geometrical restrictions, redundancy
between two or more variables, etc. that make the problem depend on a reduced
set of factors that explain the observed behavior. The computation of a minimal
set of variables that describe these factors makes it possible to develop e�cient
data visualization methods with a large explanatory power.

The problem of finding a reduced set of latent variables that explain a large
dimensional set is closely related to dimensionality reduction (DR). DR Tech-
niques have been used for a long time. Maybe one of the first and most ever used
?? This work has been financed by the spanish Ministry of Science and Education and
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Table 1. Description of the 9 experiments.

Experiment No. Label Descripction

#1 Ecc Mechanical eccentricity
#2 ’Ecc+Imb’ Mechanical eccentricity + Electrical imbalance
#3 ’Normal’ No eccentricity, no electrical imbalance.
#4 ’Imb-10’ Electrical imbalance (fixed load, 10 �)
#5 ’Imb-15’ Electrical imbalance (fixed load, 15 �)
#6 ’Imb-20’ Electrical imbalance (fixed load, 20 �)
#7 ’Imb-5’ Electrical imbalance (fixed load, 5 �)
#8 ’Imb-var-1’ Electrical imbalance (variable load, low⇥high⇥low)
#9 ’Imb-var-2’ Electrical imbalance (variable load, low⇥high)

Table 2. Four DR methods and parameters.

Method Parameters description

LTSA K = 100 K = 100 neighbors –see [17].
LLE K = 100, ⇥ = 0.1 K = 100 neighbors and regularizing factor ⇥ = 0.1 –see [10].
L-Eig ⇤ = 0.5, � = 0.5 Distances ⇤xi � xj⇤ previously normalized to the range [0, 1], the heat

kernel parameter is ⇤ = 0.5 and �-neighborhood � = 0.5 –see [1].
ISOMAP K = 100 K = 100 neighbors –see [14].

Fig. 3. Projections using the four methods.

ditions –Imb-5, Imb-10, Imb-15, Imb-var-1, Imb-var-2–, showing up good
consistency with the nature of the fault.

Some minor di�erences can be observed among the four methods. The com-
bined mechanical and electrical asymmetry Ecc+Imb reveals a small 1D variation
of its states in the LTSA, L-Eig and ISOMAP methods, and is reflected as a
small cluster in LLE method. Also, the continuous transition between the dif-
ferent degrees of electrical imbalances is better described in the LTSA, LLE and
ISOMAP, while the L-Eig method seems to show a dependency on two factors.
A more complete representation of the process dynamics can be obtained includ-
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C. Simultaneous Vibrations Sources

In an actual system, the complex electromechanical interac-
tions involved, usually produce different condition scenarios
from those studied previously when the fault causes are
analyzed separately. In these new situations, the identification
of root causes of failure is sometimes elusive due to the
complexity in uncoupling the mechanical failure causes and
their direct electrical effects [14].

The objective when exploring the current spectrum under
these circumstances, is to obtain useful information about
reliable current-vibration relationships through the different
working conditions in order to be capable of identifying these
different states by means of sensorless diagnosis.

III. EXPERIMENTAL SETUP

The test rig consists of one AC asynchronous machine of
4kW and two pole pairs, two accelerometers with a bandwidth
of 13 KHz and a 100 mV/g output, three Hall effect current
transducers, one RTD Pt-100 temperature sensor, a multichan-
nel low-pass filtering box and a powerful data acquisition,
processing and visualization software application which was
developed for process condition monitoring and has two main
modules: one for data acquisition and another one for feature
extraction [15].

Both accelerometers are mounted on the motor housing,
as shown in Fig. 1, to acquire the global motor vibration
levels. The analyzed faults are unbalances produced in two
ways: external vibrations –in this case the external source of
vibration is a mechanical asymmetry located as an eccentric
mass at the motor fan which rotates at a frequency fv

ext

of
30Hz– and mechanical imbalance –an oscillating torque is
caused by a revolving mass bolted to a disc and obviously
rotating at the motor frequency n of 25 Hz. Both the vibration
and current signals are low-pass filtered at 300Hz through
a 4th order Butterworth type filter in order to limit aliasing
distortion. The data acquisition module performs the task re-
lated to acquisition, storage and displaying of data as temporal
signals and its corresponding spectra obtained by means of
Fast Fourier Transform. The sampling frequency is 1000Hz.

Tests were carried out under 8 different vibration conditions
(two tests were done for each condition) combining two types
of vibration sources: mechanical imbalance (MI) by changing
the weight of the asymmetric mass (0, 2, 8 and 12 mass units),
and external vibration (EV, with and without). The labels for
each condition are summarized in Table I.

Label MI (in mass units) EV
0s 0 without
0c 0 with
2s 2 without
2c 2 with
8s 8 without
8c 8 with

12s 12 without
12c 12 with

TABLE I
LABELS FOR THE 8 VIBRATION CONDITIONS TESTED ON THE MOTOR.
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Fig. 2. Typical feature extraction process to compose the data matrix D.

IV. CORRELATION MINING TECHNIQUES

In this section we describe a set of techniques –some of
them widely used in data mining applications and others new
in the field– for correlation mining and its application to the
problem exposed in section II.

A. Feature extraction
Let’s suppose we have measured a variable d(t) at regular

time intervals with a sample period T

{ d(T ), d(2T ), · · · , d(kT ), · · · }

and computed the FFT harmonics at frequencies f1, f2, · · · , fn

at overlapped windows to obtain, for the kth window, the
feature vector

dk =
⇤
Df1

k ,Df2
k , · · · Df

n

k

⌅T
.

Joining the feature vectors, we can build a data matrix

D = (dij) = [d1,d2, · · · ,dN ]

where dij ⇥ Df
i

j represents the energy at frequency fi

evaluated at window j. This feature extraction process is
sketched in Fig. 2

In order to analyze the joint behavior of currents and
vibrations, it is possible to define an augmented data matrix
as

X =
�

I
A

⇥

where I and A are data matrices containing the current and
vibration harmonics respectively.

In order to find correlations between currents and vibrations,
a matrix of feature vectors was built containing the energies at
frequencies 5, 10, · · · , 200 Hz for current in one phase iR(t)
as well as for horizontal and vertical accelerations ah(t) and
av(t) using 8192�point windows with an overlapping of 50%.
All this gives a feature vector containing 40 current harmonics
and 80 acceleration harmonics.

xk = [i5R, i10R , · · · , i200R⌥ ⌃⇧ �
currents

, a5
h, · · · a200

h , a5
v, · · · , a200

v⌥ ⌃⇧ �
vibrations

]T

{f1, B1}

{f2, B2}

{fn, Bn}

Dimensionality
Reduction visualization

k-th signal buffer

Computation
of band 
energies

feature
vector
dk

d1k

d2k

dnk
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ing a larger set of features, resulting in spectrum representations. Since every
projected point is associated to a vector of energies at frequency bands, glyphs
at every projected position can be generated from energies of a whole frequency
range, resulting in a visualization like figure 4, that was obtained for projec-
tions of the LTSA method showing harmonics from 25 Hz to 200 Hz, in steps
of 25 Hz. Such representation gives a comprehensive view of the global behavior
of the signal frequency content. Also, it can be seen how the spectrum shape
changes continuously from the di�erent conditions, revealing the 1D nature of
the vibration conditions induced in the experiments.

Fig. 4. Map of projected spectra using LTSA. Note that the projections are spatially
distributed so that harmonics smoothly change across the vibration conditions.

5 Conclusions

In this paper we have proposed a procedure to explore the dynamic behavior of a
process composed of a feature extraction stage based on the frequency domain,
and a DR mapping using manifold learning algorithms for visualization. For
many kinds of engineering systems, the method is based on the assumption that
variations on their operating condition originated by a low number of factors
influence in nearly the same way all frequencies of the signal spectrum, lead-
ing to highly structured data in a properly chosen feature space. The proposed
method is applied to vibration analysis of a faulty induction motor. The results
show that vibration data produced under two di�erent kinds of faults (electrical
and mechanical asymmetries) produce low dimensional structures in the feature

Projections are spatially distributed
so that harmonics smoothly change 
across the vibration conditions.

Map of projected spectra (LTSA)
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Abstract. This paper describes a procedure based on the use of manifold learning algorithms
to visualize periodic –or nearly periodic– time series produced by processes with di�erent under-
lying dynamics. The proposed approach is done in two steps: a feature extraction stage, where a
set of descriptors in the frequency domain is extracted, and a manifold learning stage that finds
low dimensional structures in the feature space and obtains projections on a low dimensional
space for visualization. This approach is applied on vibration data of an electromechanical
rotating machine to visualize di�erent vibration conditions under two kinds of asymmetries,
using four state-of-the-art manifold learning algorithms for comparison purposes. In all cases,
the methods yield consistent results and produce insightful visualizations, suggesting future
developments and application in engineering problems.
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The test rig consists of one AC asyn-
chronous machine of 4kW and two pole
pairs, two accelerometers –only the hor-
izontal was used in this paper– with a
bandwidth of 13 KHz and a 100 mV/g
sensitivity, a multichannel low-pass fil-
tering box and a data acquisition card.
The accelerometer signal was previously
filtered using a 4th order Butterworth
filter to limit aliasing distortion and
later acquired with a 5000 Hz sample
rate.
The analyzed faults were induced by
two kinds of asymmetries: external vi-
brations produced by a mechanical ec-
centricity – a revolving mass bolted to
a disc causing an oscillating torque at
the rotating speed, near 25 Hz– and an
electrical imbalance caused by a vari-
able electrical load –a resistor– in one
of the phases. A total of nine exper-
iments were done, running the motor
under both kinds of faults and combi-
nations of these.

1

1 Feature Extraction

A windowed DFT transform is used to
avoid Gibbs e�ect

Yi =
N�1X

k=0

w(k)yke�j2�ik/N

i = 0, · · · , N � 1

where w(k) is a windowing function –
Hanning in this paper.
For the nth window yn, the energies in
bands around p specified center frequen-
cies f1, f2, · · · , fp with predefined band-
widths B1, B2, · · · , Bp can be computed
by summing up the squares of the har-
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where din represents the energy in the
band {fi, Bi} –that is, with center fre-
quency fi and width Bi–, for window
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Conclusions.

Procedure to explore the dynamic be-
havior of a process composed of a fea-
ture extraction stage based on the fre-
quency domain, and a DR mapping us-
ing manifold learning algorithms for vi-
sualization.

The method is based on the assumption
that variations on their operating condi-
tion originated by a low number of fac-
tors influence in nearly the same way
all frequencies of the signal spectrum,
leading to highly structured data in a
properly chosen feature space.

Results show that vibration data pro-
duced under two di�erent kinds of faults
(electrical and mechanical asymmetries)
produce low dimensional structures in
the feature space that can be e⇥ciently
unfolded with state-of-the-art DR meth-
ods.

The resulting projections can be e⇥-
ciently represented using visualization
methods that provide an insightful view
of the changing dynamics, suggesting
the potential use of the proposed ap-
proach in many problems in which vi-
sualization of dynamics is required such
as fault detection or industrial process
data mining.

The method can be adapted for on-
line monitoring using nonlinear interpo-
lation between the input and projected
points to project new data.
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A more complete representation of the
process dynamics can be obtained in-
cluding a larger set of features, result-
ing in spectrum representations. Since
every projected point is associated to a
vector of energies at frequency bands,
glyphs at every projected position can
be generated from energies of a whole
frequency range, resulting in the visual-
ization shown in the left figure, that was
obtained for projections of the LTSA
method showing harmonics from 25 Hz
to 200 Hz, in steps of 25 Hz.
Such representation gives a comprehen-
sive view of the global behavior of the
signal frequency content. Also, it can be
seen how the spectrum shape changes
continuously from the di�erent condi-
tions, revealing the 1D nature of the vi-
bration conditions induced in the exper-
iments.
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In many electromechanical systems, the
feature vector described above is invari-
ant for a given process condition. We
assume that the process condition de-
pends on a few factors. So, a rela-
tionship between the high dimensional
feature space and the low dimensional
space of factors that define the actual
process condition can be established.

Under this hypothesis, the problem is to
find latent low dimensional structures in
the feature space as, precisely, DR tech-
niques are aimed. Thus, DR techniques
can be applied to unfold the data on the
feature space. This yields a distribution
of the projections using a spatial distri-
bution that reflects the factors on which
the process conditions depend.

Combined with scatter plots using col-
ors and/or glyphs to represent features
or variables with a physical sense, this
provide insightful information on the
behavior of the process. In this work
four state-of-the-art methods, namely,
LTSA, LLE, L-Eig, and ISOMAP are
tested, showing that all produce insight-
ful results and lead to conceptually sim-
ilar conclusions.
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Color scale represents the values of two
dynamic features, namely, the energy in
the 25 ± 1 Hz band –which is specially
sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to elec-
trical imbalance. The four columns rep-
resent the four DR methods and the two
rows represent the features.
The results show that the four DR
methods yield similar conclusions. All
the methods show in separate regions
the four main conditions, namely,
Normal, Ecc, Imb-20 and Ecc+Imb. All
the projections also show, as expected,
smooth continuous transitions between
the normal and severe electrical im-
balance conditions –Imb-5, Imb-10,

Imb-15, Imb-var-1, Imb-var-2–,
showing up good consistency with the
nature of the fault.
Some minor di�erences can be observed
among the four methods. The com-
bined mechanical and electrical asym-
metry Ecc+Imb reveals a small 1D vari-
ation of its states in the LTSA, L-Eig
and ISOMAP methods, and is reflected
as a small cluster in LLE method.
Also, the continuous transition between
the di�erent degrees of electrical imbal-
ances is better described in the LTSA,
LLE and ISOMAP, while the L-Eig
method seems to show a dependency on
two factors.
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Table 1. Description of the 9 experiments.

Experiment No. Label Descripction

#1 Ecc Mechanical eccentricity
#2 ’Ecc+Imb’ Mechanical eccentricity + Electrical imbalance
#3 ’Normal’ No eccentricity, no electrical imbalance.
#4 ’Imb-10’ Electrical imbalance (fixed load, 10 �)
#5 ’Imb-15’ Electrical imbalance (fixed load, 15 �)
#6 ’Imb-20’ Electrical imbalance (fixed load, 20 �)
#7 ’Imb-5’ Electrical imbalance (fixed load, 5 �)
#8 ’Imb-var-1’ Electrical imbalance (variable load, low⇥high⇥low)
#9 ’Imb-var-2’ Electrical imbalance (variable load, low⇥high)

Table 2. Four DR methods and parameters.

Method Parameters description

LTSA K = 100 K = 100 neighbors –see [17].
LLE K = 100, ⇥ = 0.1 K = 100 neighbors and regularizing factor ⇥ = 0.1 –see [10].
L-Eig ⇤ = 0.5, � = 0.5 Distances ⇤xi � xj⇤ previously normalized to the range [0, 1], the heat

kernel parameter is ⇤ = 0.5 and �-neighborhood � = 0.5 –see [1].
ISOMAP K = 100 K = 100 neighbors –see [14].

Fig. 3. Projections using the four methods.

ditions –Imb-5, Imb-10, Imb-15, Imb-var-1, Imb-var-2–, showing up good
consistency with the nature of the fault.

Some minor di�erences can be observed among the four methods. The com-
bined mechanical and electrical asymmetry Ecc+Imb reveals a small 1D variation
of its states in the LTSA, L-Eig and ISOMAP methods, and is reflected as a
small cluster in LLE method. Also, the continuous transition between the dif-
ferent degrees of electrical imbalances is better described in the LTSA, LLE and
ISOMAP, while the L-Eig method seems to show a dependency on two factors.
A more complete representation of the process dynamics can be obtained includ-
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Fig. 2. Schematic of the rig setup (top) and time plot of the accelerometer signal for
the 9 experiments (bottom). The details in the bottom figure show up the change in
time series dynamics

4 Results

The rotation speed of the 2 pole-pair induction machine with no mechanical
load is very close to 1500 rpm –25 Hz-. Frequencies associated to mechanical
asymmetries will typically be 1�, 2�, · · · , n� multiples of 25 Hz. Vibration com-
ponents produced by electrical imbalance are multiples –specially 2�– of the 50
Hz line frequency. For each of the 9 experiments, 35 dimensional feature vectors
containing energies in bands 25±1 Hz, 50±1 Hz, · · ·, 875±1 Hz, were computed
for 8192-point windows with an overlapping of 5%, by summing up the squared
modules of the FFT harmonics falling inside each band. To represent the process
behavior, four manifold learning –LTSA, LLE, laplacian eigenmaps (L-Eig) and
ISOMAP– methods were applied, with the parameters described in Table 2.

The projections obtained using the four methods are shown in Fig. 3, using
a color scale to represent the values of two dynamic features, namely, the energy
in the 25± 1 Hz band –which is specially sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to electrical imbalance. The four columns represent
the four DR methods and the two rows represent the features.

The results show that the four DR methods yield similar conclusions. All
the methods show in separate regions the four main conditions, namely, Normal,
Ecc, Imb-20 and Ecc+Imb. All the projections also show, as expected, smooth
continuous transitions between the normal and severe electrical imbalance con-
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The test rig consists of one AC asyn-
chronous machine of 4kW and two pole
pairs, two accelerometers –only the hor-
izontal was used in this paper– with a
bandwidth of 13 KHz and a 100 mV/g
sensitivity, a multichannel low-pass fil-
tering box and a data acquisition card.
The accelerometer signal was previously
filtered using a 4th order Butterworth
filter to limit aliasing distortion and
later acquired with a 5000 Hz sample
rate.
The analyzed faults were induced by
two kinds of asymmetries: external vi-
brations produced by a mechanical ec-
centricity – a revolving mass bolted to
a disc causing an oscillating torque at
the rotating speed, near 25 Hz– and an
electrical imbalance caused by a vari-
able electrical load –a resistor– in one
of the phases. A total of nine exper-
iments were done, running the motor
under both kinds of faults and combi-
nations of these.
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where w(k) is a windowing function –
Hanning in this paper.
For the nth window yn, the energies in
bands around p specified center frequen-
cies f1, f2, · · · , fp with predefined band-
widths B1, B2, · · · , Bp can be computed
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band {fi, Bi} –that is, with center fre-
quency fi and width Bi–, for window
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C. Simultaneous Vibrations Sources

In an actual system, the complex electromechanical interac-
tions involved, usually produce different condition scenarios
from those studied previously when the fault causes are
analyzed separately. In these new situations, the identification
of root causes of failure is sometimes elusive due to the
complexity in uncoupling the mechanical failure causes and
their direct electrical effects [14].

The objective when exploring the current spectrum under
these circumstances, is to obtain useful information about
reliable current-vibration relationships through the different
working conditions in order to be capable of identifying these
different states by means of sensorless diagnosis.

III. EXPERIMENTAL SETUP

The test rig consists of one AC asynchronous machine of
4kW and two pole pairs, two accelerometers with a bandwidth
of 13 KHz and a 100 mV/g output, three Hall effect current
transducers, one RTD Pt-100 temperature sensor, a multichan-
nel low-pass filtering box and a powerful data acquisition,
processing and visualization software application which was
developed for process condition monitoring and has two main
modules: one for data acquisition and another one for feature
extraction [15].

Both accelerometers are mounted on the motor housing,
as shown in Fig. 1, to acquire the global motor vibration
levels. The analyzed faults are unbalances produced in two
ways: external vibrations –in this case the external source of
vibration is a mechanical asymmetry located as an eccentric
mass at the motor fan which rotates at a frequency fv

ext

of
30Hz– and mechanical imbalance –an oscillating torque is
caused by a revolving mass bolted to a disc and obviously
rotating at the motor frequency n of 25 Hz. Both the vibration
and current signals are low-pass filtered at 300Hz through
a 4th order Butterworth type filter in order to limit aliasing
distortion. The data acquisition module performs the task re-
lated to acquisition, storage and displaying of data as temporal
signals and its corresponding spectra obtained by means of
Fast Fourier Transform. The sampling frequency is 1000Hz.

Tests were carried out under 8 different vibration conditions
(two tests were done for each condition) combining two types
of vibration sources: mechanical imbalance (MI) by changing
the weight of the asymmetric mass (0, 2, 8 and 12 mass units),
and external vibration (EV, with and without). The labels for
each condition are summarized in Table I.

Label MI (in mass units) EV
0s 0 without
0c 0 with
2s 2 without
2c 2 with
8s 8 without
8c 8 with

12s 12 without
12c 12 with

TABLE I
LABELS FOR THE 8 VIBRATION CONDITIONS TESTED ON THE MOTOR.
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Fig. 2. Typical feature extraction process to compose the data matrix D.

IV. CORRELATION MINING TECHNIQUES

In this section we describe a set of techniques –some of
them widely used in data mining applications and others new
in the field– for correlation mining and its application to the
problem exposed in section II.

A. Feature extraction
Let’s suppose we have measured a variable d(t) at regular

time intervals with a sample period T

{ d(T ), d(2T ), · · · , d(kT ), · · · }

and computed the FFT harmonics at frequencies f1, f2, · · · , fn

at overlapped windows to obtain, for the kth window, the
feature vector

dk =
⇤
Df1

k ,Df2
k , · · · Df

n

k

⌅T
.

Joining the feature vectors, we can build a data matrix

D = (dij) = [d1,d2, · · · ,dN ]

where dij ⇥ Df
i

j represents the energy at frequency fi

evaluated at window j. This feature extraction process is
sketched in Fig. 2

In order to analyze the joint behavior of currents and
vibrations, it is possible to define an augmented data matrix
as

X =
�

I
A

⇥

where I and A are data matrices containing the current and
vibration harmonics respectively.

In order to find correlations between currents and vibrations,
a matrix of feature vectors was built containing the energies at
frequencies 5, 10, · · · , 200 Hz for current in one phase iR(t)
as well as for horizontal and vertical accelerations ah(t) and
av(t) using 8192�point windows with an overlapping of 50%.
All this gives a feature vector containing 40 current harmonics
and 80 acceleration harmonics.

xk = [i5R, i10R , · · · , i200R⌥ ⌃⇧ �
currents

, a5
h, · · · a200

h , a5
v, · · · , a200

v⌥ ⌃⇧ �
vibrations

]T
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In many electromechanical systems, the
feature vector described above is invari-
ant for a given process condition. We
assume that the process condition de-
pends on a few factors. So, a rela-
tionship between the high dimensional
feature space and the low dimensional
space of factors that define the actual
process condition can be established.

Under this hypothesis, the problem is to
find latent low dimensional structures in
the feature space as, precisely, DR tech-
niques are aimed. Thus, DR techniques
can be applied to unfold the data on the
feature space. This yields a distribution
of the projections using a spatial distri-
bution that reflects the factors on which
the process conditions depend.

Combined with scatter plots using col-
ors and/or glyphs to represent features
or variables with a physical sense, this
provide insightful information on the
behavior of the process.

In this work four state-of-the-art meth-
ods, namely, LTSA, LLE, L-Eig, and
ISOMAP are tested, showing that all
produce insightful results and lead to
conceptually similar conclusions.
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wq1 wq2 wq3 wq4 wq5 wq6

Sensitivity analysis
Whenever the user increases a single weight “wq” the input 
distance pattern dij becomes more sensitive to variable q. Points 
(samples) showing significantly large deviations in variable q, will 
move apart upon changes in wq, thus revealing their dependency 
on variable q.

wq wq

3 we describe an application demo of the iDR idea for the visual analysis of fault
states in a rotating machine. Finally, section 4 concludes the paper.

2 The interactive Dimensionality Reduction approach

In the typical procedure to use DR algorithms for visual analytics, interaction
is often done after DR computation on the input dataset. The user sets up an
initial configuration for the DR algorithm, runs it until convergence and, after N
iterations, the output results are used to produce a visualization. The user may
later use interaction techniques to reconfigure this visualization or even decide to
run the DR algorithm again using another parameterization, starting the cycle
again –see for instance [2]. This approach can be thought of as a batch mode

interaction scheme for DR visual analytics.

DR algorithm

iteration

DR Code Output Visualization

Interaction

Interaction

DR algorithm

iteration

DR Code Output Visualization

Interaction

Interaction

Fig. 1: Batch mode interaction scheme (left) vs. the iDR approach (right)

However, interaction can go far beyond this approach, allowing the user to
take full control of the DR behavior by means of iterative reconfiguration of

computational algorithms [3]. The right picture in Fig. 1, shows the main idea
of this approach for DR analysis, where the intermediate results are used to
produce a visualization at each iteration. The result is a dynamically changing
visualization that allows the user to track changes in the resulting projection
under changes in the problem formulation, such as, for instance, user-driven
changes of the metric in the input space (e.g. by modifying the weights of the
input variables), or under time-varying input data (e.g. in dynamic processes
where the elements of the input dataset change with time). Despite this approach
is still rather unexplored, a few related works can be found, as an interactive
version of PCA [4] and an interactive learning of distance functions [5].

2.1 Applications of the iDR approach

To allow interaction, we shall consider iterative algorithms, such as Stochastic
Neighbor Embedding (SNE) [6] or the Neigborhood Retrieval Visualizer (NeRV)
[7]. For simplicity, let’s consider a block diagram of the SNE algorithm for the
k-th iteration –see Fig. 2. Some of the inputs –data or parameters– to the
algorithm can change or be changed by the user at each iteration.

batch mode interaction scheme iDR interaction scheme

set initial configuration
run until convergence (N steps)

visualize the results
fine-tune the DR algorithm

run 1step 
visualize the results

set initial configuration

fine-tune
the DR algorithm

quick!
~10-1s

slow!
~101s

enables a quick feedback to the user
and hence a much better user integration
in the exploration process

3.   Interactive incorporation of class knowledge

original space class space

algorithm converges smoothly to a new stable state –that is, the DR projection
under the new metric–, changes can be tracked by the user, allowing to establish
links and find di↵erences between the new projection and the former one.

Interacting with the weights !

q

, the user can explore several kinds of non-
linear correlations between the variables. Suppose that the user has chosen
a set of K nonzero weights {!

q1 ,!q2 , . . . ,!qK}. If a 1-dimensional structure
–i.e. a snake-shaped figure– emerges after convergence in the projection, it re-
veals a mutual nonlinear dependency on an independent parameter t of the type
x

q1 = f

q1(t), xq2 = f

q2(t), . . . , xqK = f

qK (t). Note that this information is
much more general than the one provided by a linear correlation coe�cient or
the more general nonlinear correlations observable in scatter plots, which can
only be visualized for two variables in a single scatter plot.

A further collateral benefit of this kind of DR interaction is sensitivity anal-

ysis. Whenever the user modifies a single weight !
q

, the input distance pattern
d

ij

becomes more sensitive to variable q. This will be reflected as large dis-
placements in the projections of all elements that have significant di↵erences
in variable q with respect to the other ones. This sensitivity analysis is not
restricted to a single variable. Eventually, if the interface allows it, the user
could change the weights {!

q1 ,!q2 , . . . ,!qM } of a group of M variables at the
same time to discover elements that di↵er significantly in any of the variables
x

q1 , xq2 , . . . , xqM . Moreover, the displacement trajectories should be di↵erent for
elements with di↵erent patterns of variation within the group.

2.1.3 Interactive feature space transformations

Feature space transformations [8] allow improving the quality of an existing
embedding in terms of both structural preservation and class separation. One
simple feature extension scheme, for instance, is to augment each element x with
an extended feature set x̄

c(x) equal to the centroid of the class c(x) it belongs
to, thus forming an extended vector x

e

= [x, x̄
c(x)]. The DR projection of x

e

,
therefore contains class information, resulting in a more meaningful projection.
A user-driven variant of this approach, suitable for interaction, could involve a
weight factor �

x

e

(�) = [(1� �)x, �x̄
c(x)]

letting the user modify �

(k) and projecting x

e

(�(k)) at iteration level, the user
can control the balance between class separation and structural preservation. As
a result the user can set the optimum point or even move it to gain insight and
find connections between data structure and class knowledge.

3 Application demo: fault analysis of AC motor

A javascript application using the iDR approach was developed using process-

ing.js (http://processingjs.org), for the analysis of vibration data in a 4kW,
2 pole-pair asynchronous motor, where three vibration signals –measured in the
three axes a

x

(t), a
y

(t), a
z

(t)– and two phase currents i
R

(t), i
S

(t) were recorded

the lambda factor allows to balance between pure 
class info (a set of a few centroids) and the original 
data

c(x)

Extended data point
using class info

original data point in the input space

λ

xc(x) the centroid for class c(x)

class to which the point x belongs

x
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Conclusiones

• visualización  
análisis	inteligente	de	datos 
interacción  
	⟶	3enen	ventajas	complementarias	

• La	integración	de	los	tres	paradigmas	 
3ene	un	gran	potencial	
‣ técnicas	sencillas	“brillan”…	parecen	otras 
cuando	se	le	añade	interacción	y	visualización	

‣ importante	nicho	de	innovación	aprovechando	tecnologías	web	

• Soluciones	especialmente	interesantes…	
‣ en	problemas	mul3variable	(ej.	factores	estudiantes)	
‣ cuando	son	importantes	el	análisis	cualita3vo,	la	intuición	y	la	interpretación
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